Preparation of a Mixture of Tungsten and Chromium Powders via Magnesium Vapor Reduction of W and Cr Oxide Compounds

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We have studied the process underlying the preparation of highly disperse tungsten + chromium powders via the magnesium vapor reduction of tungsten and chromium mixed oxide compounds in the temperature range from 700 to 800°C at residual argon pressures in the reactor from 5 to 20 kPa and obtained W + Cr powder mixtures with specific surface area from 34 to 49 m2/g. The powders have a mesoporous structure and can be used as precursors for the preparation of self-passivating alloys.

Sobre autores

V. Kolosov

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, 184209, Akademgorodok, Apatity, Murmansk region, Russia

Email: v.kolosov@ksc.ru
Россия, 184209, Мурманская обл., Апатиты, Академгородок, 26а

M. Miroshnichenko

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, 184209, Akademgorodok, Apatity, Murmansk region, Russia

Email: v.kolosov@ksc.ru
Россия, 184209, Мурманская обл., Апатиты, Академгородок, 26а

T. Prokhorova

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, 184209, Akademgorodok, Apatity, Murmansk region, Russia

Autor responsável pela correspondência
Email: v.kolosov@ksc.ru
Россия, 184209, Мурманская обл., Апатиты, Академгородок, 26а

Bibliografia

  1. Webb W.W., Norton J.T., Wagner C. Oxidation of Tungsten // J. Electrochem. Soc. 1956. V. 103. № 2. P. 107–111. https://doi.org/10.1149/1.2430238
  2. Telu S., Patra A., Sankaranarayana M., Mitra R., Pabi S.K. Microstructure and Cyclic Oxidation Behavior of W–Cr Alloys Prepared by Sintering of Mechanically Alloyed Nanocrystalline Powders // Int. J. Refract. Met. Hard Mater. 2013. V. 36. № 1. P. 191–203. https://doi.org/10.1016/j.ijrmhm.2012.08.015
  3. Naidu S.V.N., Sriramamurthy A.M., Rao P.R. The Cr−W (Chromium−Tungsten) System // Bull. Alloy Phase Diagrams. 1984. V. 5. № 3. P. 289–292. https://doi.org/10.1007/BF02868555
  4. Лидин Р.А., Молочко В.А., Андреева Л.Л. Химические свойства неорганических веществ. М.: Химия, 2000. 480 с.
  5. Бодрова Л.Е., Мельчаков С.Ю., Гойда Э.Ю. и др. Дисперсные структуры распада твердых растворов (Cr,W) в сплавах Cr–W–Cu // Металлы. 2022. № 1. С. 21–32.
  6. Park M., Alexander K.C., Schuh C.A. Diffusion of Tungsten in Chromium: Experiments and Atomistic Modeling // J. Alloys Compd. 2014. V. 611. № 1–2. P. 433–439. https://doi.org/10.1016/j.jallcom.2014.05.085
  7. Dzykovich I.Ya., Panichkina V.V., Skorokhod V.V., Shaiderman L.I. Effect of Palladium on Diffusion Processes in the System Tungsten-Chromium // Soviet Powder Metall. Met. Ceram. 1976. V. 15. № 2. P. 151–153. https://doi.org/10.1007/bf00793571
  8. Kafri A., Makonovitsky A., Shneck R. Z. On the Mechanism of Oxidation Resistance of W-Cr-Pd Alloys // Defect Diffusion Forum. 2018. V. 383. P. 133–141. doi: 10.4028/ href='www.scientific.net/ddf.383.133' target='_blank'>www.scientific.net/ddf.383.133
  9. Litnovsky A., Klein F., Tan X. et al. Advanced Self-Passivating Alloys for an Application under Extreme Conditions // Metals. 2021. V. 11. № 8. P. 1255–1273. https://doi.org/10.3390/met11081255
  10. Lopez-Ruiz P., Koch F., Ordas N. et al. Manufacturing of Self-Passivating W–Cr–Si Alloys by Mechanical Alloying and HIP // Fusion Eng. Des. 2011. V. 86. № 9–11. P. 1719–1723. https://doi.org/10.1016/j.fusengdes.2011.03.107
  11. García-Rosales C., López-Ruiz P., Alvarez-Martín S. Oxidation Behaviour of Bulk W–Cr–Ti Alloys Prepared by Mechanical Alloying and HIPing // Fusion Eng. Des. 2014. V. 89. № 7–8. P. 1611–1616. https://doi.org/10.1016/j.fusengdes.2014.04.057
  12. Sal E., García-Rosales C., Iturriza I. et al. High Temperature Microstructural Stability of Self-Passivating W–Cr–Y Alloys for Blanket First Wall Application // Fusion Eng. Des. 2019. V. 146. № P. 1596–1599. https://doi.org/10.1016/j.fusengdes.2019.02.136
  13. Calvo A., García-Rosales., Koch F. et al. Manufacturing and Testing of Self-Passivating Tungsten Alloys of Different Composition // Nucl. Mater. Energy. 2016. V. 9. P. 422–429. https://doi.org/10.1016/j.nme.2016.06.002
  14. Staab T.E., Krause-Rehberg R., Vetter B. et al. The Influence of Microstructure on the Sintering Process in Crystalline Metal Powders Investigated by Positron Lifetime Spectroscopy: II. Tungsten Powders with Different Powder-Particle Sizes // J. Phys.: Condens. Matter. 1999. V. 11. P. 1787–1806. https://doi.org/10.1088/0953-8984/11/7/010
  15. Hou Q.-Q., Huang K., Luo L.-M. et al. Microstructure and Its High Temperature Oxidation Behavior of W–Cr Alloys Prepared by Spark Plasma Sintering // Materialia. 2019. V. 6. P. 100332(1/7). https://doi.org/10.1016/j.mtla.2019.100332
  16. Орлов В.М., Колосов В.Н. Магниетермическое восстановление оксидных соединений вольфрама и молибдена // Докл. РАН. 2016. Т. 468. № 3. С. 288–292. https://doi.org/10.7868/S0869565216150147
  17. Колосов В.Н., Мирошниченко М.Н., Орлов В.М. Магниетермическое получение порошков хрома // Неорган. материалы. 2021. Т. 57. № 2. С. 137–143. https://doi.org/10.31857/S0002337X2101
  18. Gaultois M.W., Kemei M.C., Harada J.K., Seshadri R. Rapid Preparation and Magnetodielectric Properties of Trirutile Cr2WO6 // J. Appl. Phys. 2015. V. 117. P. 014105. https://doi.org/10.1063/1.4905486
  19. Fang Y., Wang L.Y., Song Y.Q. et al. Manipulation of Magnetic Field on Dielectric Constant and Electric Polarization in Cr2WO6 // Appl. Phys. Lett. 2014. V. 104. № 13. P. 014105. https://doi.org/10.1063/1.4870518
  20. Tian C., Zhou M., Hua Z. et al. Investigation on Acetone Sensing Properties and Mechanism of p-Type Cr2WO6 Nanoparticles // J. Mater. Sci.: Mater. Electron. 2020. V. 31. № 13. P. 3899–3909. https://doi.org/10.1007/s10854-020-02935-5
  21. Zhou W., Huang J., Li J. et al. Cr2WO6 Nanoparticles Prepared by Hydrothermal Assisted Method with Selective Adsorption Properties for Methylene Blue in Water // Mater. Sci. Semicond. Process. 2015. V. 34. P. 170–174. https://doi.org/10.1016/j.mssp.2015.02.010
  22. Орлов В.М., Мирошниченко М.Н., Колосов В.Н. Синтез оксидных соединений вольфрама с хромом методом спекания. Cб. Матер. VI Междунар. конф. “Химия и химическая технология” (Ереван, 20–27 сентября 2019 г.). Ереван: ИОНХ НАН РА, 2019. С. 120–122.
  23. Cullity B.D., Stock S.R. Elements of X-Ray Diffraction, 3rd ed. Prentice-Hall, 2001.
  24. Колосов В.Н., Орлов В.М. Электронно-опосредованные реакции при металлотермическом восстановлении оксидных соединений молибдена и вольфрама // Докл. РАН. 2019. Т. 484. № 4. С. 447–450. https://doi.org/10.31857/S0869-56524844447-450

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (139KB)
3.

Baixar (53KB)
4.

Baixar (2MB)
5.

Baixar (137KB)
6.

Baixar (108KB)
7.

Baixar (91KB)
8.

Baixar (1MB)
9.

Baixar (131KB)

Declaração de direitos autorais © В.Н. Колосов, М.Н. Мирошниченко, Т.Ю. Прохорова, 2023