Destruction of open star clusters and the radius-mass relationship

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The processes of formation and six mechanisms of disintegration of open star clusters (OSCs) are considered. Analytical estimates of the rates of OSC disintegration are made for the following mechanisms: loss of the initial gas component of OSCs, mass loss due to supernovae explosions and planetary nebula formation, pair interactions of OSC stars, acceleration of stars by binary systems of OSCs, interaction of OSC stars with stars of the Galactic disk, collisions of OSCs with giant molecular clouds (GMCs) at the front of a spiral wave. The destruction of OSCs is accompanied by the formation of a stellar stream. An analysis of the radius-mass ratio of the OSC core (RM) allowed us to conclude that it probably does not reflect the disintegration mechanism and is a product of observational selection effects. The evolution of an individual OSC in the R-M plane is determined by the initial density and external conditions.

Full Text

Restricted Access

About the authors

A. V. Tutukov

Institute of Astronomy, Russian Academy of Sciences

Email: svvs@ya.ru
Russian Federation, Moscow

S. V. Vereshchagin

Institute of Astronomy, Russian Academy of Sciences

Author for correspondence.
Email: svvs@ya.ru
Russian Federation, Moscow

N. V. Chupina

Institute of Astronomy, Russian Academy of Sciences

Email: svvs@ya.ru
Russian Federation, Moscow

References

  1. H. Shapley, John G. Wolbach Library, Harvard-Smithsonian Center for Astrophysics (HarMo) 2 (1930).
  2. B. Hertzsprung, Bulletin of the Astronomical Institutes of the Netherlands 1, 218 (1923).
  3. R. Trumpler, Lick Observatory bulletin 14, 154 (1930).
  4. O.J. Eggen, A.R. Sandage, Monthly Not. Roy. Astron. Soc. 119, 255 (1959).
  5. Ch. Messier, Connoissance des Temps ou des Mouvements Célestes for 1784, 227 (1781).
  6. W. Herschel, Philosoph. Trans. Roy. Soc. of London 76, 457 (1786).
  7. R. Proctor, Monthly Not. Roy. Astron. Soc. 30, 50 (1869).
  8. A. Eddington, Nature 106, 14 (1920).
  9. S. Chandrasekhar, Astrophys J. 67, 206 (1938).
  10. H. Jonson, A. Sandage, Astrophys. J. 121, 616 (1955).
  11. I. King, Astron. J. 63, 265 (1958).
  12. O. Eggen, G. Herbig, Monthly Not. Roy. Astron. Soc. 137, 111 (1967).
  13. R. Larson, Monthly Not. Roy. Astron. Soc. 147, 323 (1970).
  14. S. Aarseth, Astron. and Ск 35, 237 (1974).
  15. A. Tutukov, Astron. and Astrophys. 70, 57 (1978).
  16. D.A. Vandenberg, Astrophys. J. Suppl. Ser. 51, 29 (1983).
  17. Ch. J. Lada, E.A. Lada, ASP Conf. Ser. 13, 3 (1991).
  18. P. Zwart, F. Simon, P. Hut et al., Astron. and Astrophys. 337, 363 (1998).
  19. N. Bastian, M. Gieles, ASPC 386, 353 (2008).
  20. A. Kamlah, R. Spurzem, P. Berczik et al., Monthly Not. Roy. Astron. Soc. 516, 3266 (2022).
  21. J.E. Wall et al., Astrophys. J. 904, 192 (2020).
  22. A. Just, A.E. Piskunov, J.H. Klos et al., Astron. and Astrophys. 672, id. A187 (2023).
  23. Е.L. Hunt, S. Reffert, Astron. and Astrophys. 673, A 114 (2023).
  24. R. Larson, Monthly Not. Roy. Astron. Soc. 194, 809 (1981).
  25. S. Pfalzner, H. Kirk, A. Sills et al., Astron. and Astrophys. 586, 68 (2016).
  26. J. Chieze, Astron. and Astrophys. 171, 225 (1987).
  27. A. Mok, R. Chandar, S. M. Fall, Astrophys. J. 911, 8 (2021).
  28. S. Smith, W. Cherny, Ch. Hayes et al., Astrophys. J. 961, 92 (2024).
  29. A. Tutukov, Astron. Rep. 63, 19 (2019).
  30. M. Krumholz, Sh. McKee, J. Bland-Hawthorn, Ann. Rev. of Astron. and Astrophys. 57, 227 (2019).
  31. B. Chen, G. Li, H. Yuan et al., Monthly Not. Roy. Astron. Soc. 493, 351 (2020).
  32. N. Choksi, J.M.D. Kruijssen, Monthly Not. Roy. Astron. Soc. 507, 5492 (2021)
  33. Y. Xing, K. Qiu, Res. in Astron. and Astrophys. 22, id.075006 (2022).
  34. K. Neralwar, D. Colombo, A. Duarte-Cabral et al., Astron. and Astrophys. 884, 84 (2022).
  35. J.P. Farias, S.S.R. Offner, M.Y. Grudić et al., Monthly Not. Roy. Astron. Soc. 527, 6732 (2024).
  36. J. Yuan, Y. Wu, S. Ellingsen et al., Astrophys. J. Suppl. Ser. 231, 11 (2017).
  37. F. Maeda, K. Ohta, Y. Fujimoto et al. Monthly Not. Roy. Astron. Soc. 493, 5045 (2020).
  38. A. Just, S. Jacobi, B. Deis, Astron. and Astrophys. 289, 237 (2024).
  39. M. Fujii, P. Zwart, Monthly Not. Roy. Astron. Soc. 449, 126 (2015).
  40. M. Messa, A. Adamo, D. Calzetti et al., Monthly Not. Roy. Astron. Soc. 477, 1683 (2018).
  41. A. Mok, R. Chandar, S.M. Fall, Astrophys. J. 893, 135 (2020).
  42. M. Kobayashi, S.I. Inutsuka, H. Kobayashi, Astrophys. J. 836, 175 (2017).
  43. A. Tutukov, B. Shustov, Astrophysics 63, 552 (2020).
  44. P. Kroupa, IAUS 241, 109 (2007).
  45. А. Масевич, А. Тутуков. Эволюция звезд: теория и наблюдения (М: Наука, 1988).
  46. B.M. Shustov, A.V. Tutukov, Astron. Rep. 62, 784 (2018).
  47. H. Lamers, H. Baumgardt, M. Gieles, Monthly Not. Roy. Astron. Soc. 433, 1378 (2013).
  48. E. Vesperini, J. Hogg, J. Webb et al., Monthly Not. Roy. Astron. Soc. 476, 2731 (2018).
  49. K. Wang, E. Peng, Ch. Liu et al., Nature 623, 296 (2023).
  50. M. Kissler-Patig, A. Jordan, N. Bastian, Astron. and Astrophys. 448, 1031 (2006).
  51. Ch-Ch He, M. Ricotti, S. Geen, Monthly Not. Roy. Astron. Soc. 489, 1880 (2019).
  52. H. Li, O. Gnedin, N. Gnedin, Astrophys. J. 861, id. 107 (2018).
  53. M. Grudic, P. Horkins, E. Lee et al., Monthly Not. Roy. Astron. Soc. 488, 1501 (2019).
  54. E. Diaz-Marquez, R. Grau, G. Busquet et al., Astron. and Astrophys. 682, A180 (2024).
  55. S. Ray, S. Dhiwar, J. Bagehi et al., Monthly Not. Roy. Astron. Soc. 527, 9999 (2024).
  56. Z. He, K. Wang, Y. Luo et al., Astrophys J. Suppl. Ser. 262, 7 (2022).
  57. Ya. O. Chumak, A.S. Rastorguev, Astronomy Letters 32, 157 (2006).
  58. S. Meingast, J. Alves, Astron. and Astrophys. 621, L3 (2019).
  59. S. Röser, E. Schilbach, B. Goldman, Astron. and Astrophys. 621, L2 (2019).
  60. S. Linden, A. Evans, L. Amus et al., Astrophys. J. 944, 55 (2023).
  61. O. Gunes, Y. Karatas, Ch. Bonatto, Astron. Nachrichten. 338, 464 (2017).
  62. К. Маршал. Задача трех тел (М: Наука, 2005).
  63. A. Tutukov, M. Sizova, S. Vereshchagin, Astron. Rep. 64, 827 (2020).
  64. E. Vaher, D. Hobbs, P. McMillan et al., Astron. and Astrophys. 679, A105 (2023).
  65. Y. Hirata, T. Mirase, J. Nishi et al., Publ. Astron. Soc. Jap. 76, 65 (2024).
  66. N.V. Kharchenko et al., J/A+A/558/A53/catalog (2013).
  67. S. Roser, E. Schilbach, Astron. and Astrophys. 638, 9 (2020).
  68. G. Thomas, B. Famaey, G. Monari et al., Astron. and Astrophys. 678, 180 (2023).
  69. S. Goodwin, N. Bastian, Monthly Not. Roy. Astron. Soc. 373, 152 (2006).
  70. H. Lamers, M. Gieles, Astron. and Astrophys. 455, 17 (2006).
  71. D. Cook, L. Lee, A. Adamo et al., Monthly Not. Roy. Astron. Soc. 519, 3749 (2023).
  72. M. Krumnolz, C. McKee, Monthly Not. Roy. Astron. Soc. 494, 624 (2020).
  73. N. Bastian, M. Gieles, H. Lamers et al., Astron. and Astrophys. 431, 905 (2005).
  74. C. Lada, E. Lada, Ann. Rev. of Astron. and Astrophys. 41, 57 (2003).
  75. S. Pfalzner, T. Kaczmarek, Astron. and Astrophys. 559, 38 (2013).
  76. J. Maiz Apellzner, M. Gonzalez, R. Barba et al., Astron. and Astrophys. 657, 12 (2022).
  77. J. Balin, Astrophys. J. 863, 99 (2018).
  78. A. Eddington, Monthly Not. Roy. Astron. Soc. 76, 572 (1916).
  79. В. Амбарцумян, Ученые зап. ЛГУ, Сер. мат. 4, 19 (1938).
  80. L. Spitzer, Monthly Not. Roy. Astron. Soc. 100, 396 (1940).
  81. S. Chandrasekhar, Astrophys. J. 98, 54 (1943).
  82. S. Mc Millan, Astrophys. J. 307, 126 (1986).
  83. M. Fujii, M. Iwasawa, Y. Funato et al., Astrophys. J. 686, 1082 (2008).
  84. M. Giersz, D. Heggie, J. Hurley et al., Monthly Not. Roy. Astron. Soc. 431, 2184 (8013).
  85. H. Lamers, M. Gieles, Astron. and Astrophys. 455, 17 (2006).
  86. F. Anders, T. Kantat-Gaudin, I. Quadrino, Astron. and Astrophys. 645, 2 (2021).
  87. Л.Э. Гуревич, Б.Ю. Левин, Доклады Академии наук СССР 70, 781 (1950).
  88. A. Tutukov, N. Chupina, S. Vereshchagin, Astron. Rep. 67, 1418 (2023).
  89. J. Kirkpatrick, F. Marocco, Ch. Geling et al., Astrophys. J. Supp. Ser. 271, id.55 (2024).
  90. D. Horta, A. Price-Whelan, D. Hogg et al., Astrophys. J. 962, id.165 (2024).
  91. J. Donada, F. Andres, C. Jordi et al., Astron. and Astrophys. 675, id.A89 (2023).
  92. J. Darbinhausen, M. Marks, P. Kroupa, Monthly Not. Roy. Astron. Soc. 510, 413 (2022).
  93. M. Wilkinson, J. Hurley, A. Mackey et al., Monthly Not. Roy. Astron. Soc. 343, 1025 (2003).
  94. D.C. Heggie, Monthly Not. Roy. Astron. Soc. 173, 729 (1975).
  95. J. Hills, Astron. J. 80, 809 (1975).
  96. A. Tokovinin, Monthly Not. Roy. Astron. Soc. 389, 925 (2008).
  97. D. Miller, I. Caiazzo, J. Heyl et al., Astrophys. J. Lett. 956, id.L41 (2023).
  98. L. Wang, A. Tani Kawa, M. Fujii, Monthly Not. Roy. Astron. Soc. 509, 4713 (2022).
  99. N. Dickson, P. Smith, V. Ytnault-Brunet et al., Monthly Not. Roy. Astron. Soc. 529, pp.331 (2023).
  100. T. Van Albade, J. Gorkom, Astron. and Astrophys. 54, 121 (1977).
  101. J.W. Lee, Astrophys. J. 961, id.227 (2024).
  102. L. Saleh, J. Barnes, Monthly Not. Roy. Astron. Soc. 527, 8551 (2024).
  103. S. White, Monthly Not. Roy. Astron. Soc. 189, 831 (1979).
  104. S. Van den Berg, D. McClure, Astron. and Astrophys. 88, 360 (1980).
  105. M. Gieles, S. Portegies Zwart, H. Baumgardt, Monthly Not. Roy. Astron. Soc. 371, 793 (2006).
  106. P. Solomon, L. Sandos, N. Scoville, IAUS 84, 35 (1979).
  107. Ch. Lada, T. Dame, Astrophys J. 898, 3 (2020).
  108. T. Nony, R. Galvan-Madrid, N. Brouiller et al., Astron. and Astrophys. 687, id.A84 (2024).
  109. B. Bhatt, A. Pandey, H. Mahra, Astrophys. and Space Sci. 129, 293 (1987).
  110. M. Gieles, H. Baumgardt, D.C. Heggie et al., Monthly Not. Roy. Astron. Soc. 408, 16 (2010).
  111. B. Cuevas-Otahola, Y. Mayya, I. Puerari et al., Monthly Not. Roy. Astron. Soc. 500, 4422 (2021).
  112. M. Gieles, ASP Conf. Ser. 470, 339 (2013).
  113. V. Jadhav, P. Kroupa, W. Wu, J. Pflamm-Altenburg, I. Thies, Astron. and Astrophys. 687, id.A89 (2024).
  114. A.R. Shirazi, H. Haghi, A.H. Zonoozi, A. Farhani Asl, P. Kroupa, Monthly Not. Roy. Astron. Soc. 531, Issue 4, pp.4166 (2024).
  115. M. Mezchua, H. Dominguez Sanchez, Monthly Not. Roy. Astron. Soc. 528, pp.5252 (2024).
  116. M. Figueira, M. Siudek, A. Pollo, et al. Astron. and Astrophys. 687, id.A117 (2024).
  117. A. Tokovinin, Astrophys. J. Supp. Ser. 235, 6 (2018).
  118. T. Merle, Bulletin de la Société Royale des Sciences de Liège 93, 170 (2024).
  119. X. Pang, Y. Li, Z. Yu et al., Astrophys. J. 912, 162 (2021).
  120. A. Tutukov, S. Vereshchagin, Physics-Uspekhi 66, 859 (2023).
  121. R. Ibata, K. Malhan, N. Martin et al., Astrophys. J. 914, 123 (2021).
  122. L. Bai, J. Zhong, L. Chen, J. Li, J. Hou, Research in Astron. and Astrophys. 22, id.055022 (2022).
  123. K.V. Nedkova, M. Rafelski, H.I. Teplitz, V. Mehta, et al., Astrophys. J. 970, id.188 (2024).
  124. M. Kulesh, A. Samirkhanova, G. Carraro, et al., Astron. J. 167, id.212 (2024).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure of an open star cluster. The core and corona of the cluster are shown schematically. The stellar stream or tidal trail [5759], consisting of stars that have left the cluster, is shown by the dashed line. The stream length can reach ~1000 pc.

Download (156KB)
3. Fig. 2. Distribution of clusters (closer than 1 kpc) from the catalog [22] by distance from the Sun (d, pc) and by logarithm of age (log t, years).

Download (97KB)
4. Fig. 3. The logarithm of the mass - logarithm of the size relationship for the clusters in the catalog [22] located within 1 kpc of the Sun. The straight line is described by the formula log mt = 2.55(±0.063) +1.83(±0.108)log Size, where log mt is the tidal mass of the cluster in solar masses, the logarithm of the cluster size in parsecs logSize = log(d r0/57.3), where r0 is the angular size of the cluster core in degrees (Fig. 1).

Download (100KB)
5. Fig. 4. a) The log mass - log size relationship for clusters with age log t< 8.0. The straight line is described by the formula log mt = 2.64 (±0.105) +2.05 (±0.178) log Size. b) The log mass - log size relationship for clusters with age 8.08.8. The straight line is described by the formula log mt = 2.39(±0.147)+1.52(±0.268)·log Size.

Download (299KB)
6. Fig. 5. The relation "logarithm of tidal mass to logarithm of age" of the clusters of the catalog [22]. The color scale shows the color of the point depending on Rg (distance from the Galactic Center, CG). Among the clusters far from the CG, old clusters are observed that have survived and have a high concentration of stars toward the center of the cluster, therefore, they are better identified at distances far from the CG, against the background of a smaller number of field stars.

Download (178KB)

Copyright (c) 2024 The Russian Academy of Sciences