Моделирование диффузии радиационных дефектов со смешанным 1d/3d-механизмом в упругих полях на примере ОЦК-металлов Fe И V
- Авторы: Демидов Д.Н.1, Сивак А.Б.1
-
Учреждения:
- НИЦ “Курчатовский институт
- Выпуск: Том 126, № 2 (2025)
- Страницы: 192-202
- Раздел: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://medjrf.com/0015-3230/article/view/683434
- DOI: https://doi.org/10.31857/S0015323025020084
- EDN: https://elibrary.ru/AYWVVK
- ID: 683434
Цитировать
Аннотация
Предложен метод моделирования диффузии радиационных дефектов (РД) со смешанным 1D/3D-механизмом диффузии (дефект мигрирует одномерно, время от времени меняя направление своей одномерной миграции) в неоднородных упругих полях на основе объектного кинетического метода Монте-Карло. В рамках этого метода влияние упругого поля на частоты смен направления миграции РД и на частоты их скачков вдоль одномерных направлений учитывается с использованием дипольных тензоров соответствующих седловых конфигураций РД в рамках анизотропной линейной теории упругости. Такие дипольные тензоры определяются на основе анализа молекулярно-динамических данных о диффузии РД в однородных упругих полях с помощью разработанной кинетической модели. С использованием предложенного метода рассчитаны зависимости стоковых сил дислокаций для димежузлий от температуры (в диапазоне 293–1000 К) и дислокационной плотности (в интервале значений 1014–1015 м-2) в ОЦК-металлах Fe и V. Рассмотрены прямолинейные полные винтовые и краевые дислокации в системах скольжения ⟨111⟩{110}, ⟨111⟩{112}, ⟨100⟩{100}, ⟨100⟩{110}. Предложены аналитические выражения, аппроксимирующие расчетные зависимости стоковых сил дислокаций от температуры и дислокационной плотности.
Ключевые слова
Полный текст

Об авторах
Д. Н. Демидов
НИЦ “Курчатовский институт
Автор, ответственный за переписку.
Email: Demidov_DN@nrcki.ru
Россия, Москва
А. Б. Сивак
НИЦ “Курчатовский институт
Email: Demidov_DN@nrcki.ru
Россия, Москва
Список литературы
- Elastic strain fields and dislocation mobility / Eds V.L. Indenbom, J. Lothe. North-Holland. Amsterdam: Elsevier Science, 1992. 793 p.
- Hirth J.P., Lothe J. Theory of Dislocations. New York: Wiley, 1982. 857 p.
- Heinisch H.L., Singh B.N., Golubov S.I. A kinetic Monte Carlo study of mixed 1D/3D defect migration // J. Comput. Aided Mater. Des. 1999. V. 6. P. 277–282.
- Barashev A.V., Golubov S.I., Trinkaus H. Reaction kinetics of glissile interstitial clusters in a crystal containing voids and dislocations // Philos. Mag. A. 2001. V. 81. P. 2515–2532.
- Trinkaus H., Heinisch H.L., Barashev A.V., Golubov S.I., Singh B.N. 1D to 3D diffusion-reaction kinetics of defects in crystals // Phys. Rev. B. 2002. V. 66. P. 06010.
- Malerba L., Becquart C.S., Domain C. Object kinetic Monte Carlo study of sink strengths // J. Nucl. Mater. 2007. V. 360. P. 159–169.
- Stoller R.E., Zarkadoula E. 1.20. Primary Radiation Damage Formation in Solids. Comprehensive Nuclear Materials (Second Edition). Elsevier. 2020. P. 620–662.
- Bortz A.B., Kalos M.H., Lebowitz J.L. A new algorithm for Monte Carlo simulation of Ising spin systems // J. Comput. Phys. 1975. V. 17. № 1. P. 10–18.
- Kröner E. Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen // Arch. Rational Mech. An. 1959/60. V. 4. P. 273–334.
- Puls M.P., Woo C.H. Diaelastic polarizabilities due to vacancies and interstitials in metal // J. Nucl. Mater. 1986. V. 139. № 1. P. 48–59.
- Osetsky Y.N., Bacon D.J., Serra A., Singh B.N., Golubov S.I. One-dimensional atomic transport by clusters of self-interstitial atoms in iron and copper // Philos. Mag. 2003. V. 83. № 1. P. 61–91.
- Романов В.А., Сивак А.Б., Чернов В.М. Кристаллографические, энергетические и кинетические свойства собственных точечных дефектов и их кластеров в ОЦК-железе. 6. Кластеры собственных межузельных атомов // ВАНТ. Сер. Материаловедение и новые материалы. 2006. T. 66. № 1. C. 223–232.
- Демидов Д.Н., Сивак А.Б., Сивак П.А. Диффузия димежузлий в ОЦК-металлах Fe и V, подверженных внешним нагрузкам разных типов // ФММ. 2021. T. 122. № 11. C. 1164–1170.
- Demidov D.N., Sivak A.B., Sivak P.A. New method for calculation of radiation defect dipole tensor and its application to di-interstitials in copper // Symmetry. 2021. V. 13. No. 7. P. 1154.
- Новик А., Берри Б. Релаксационные явления в кристаллах / А. Новик, Б. Берри; пер. с англ.: под ред. Э.М. Надгорного, Я.М. Сойфера. М.: Атомиздат, 1975. 472 с.
- Sivak A.B., Demidov D.N., Sivak P.A. Diffusion characteristics of radiation defects in iron: molecular dynamics data // ВАНТ. Сер. Термоядерный синтез. 2021. T. 44. № 2. C. 148–157.
- Demidov D.N., Sivak A.B., Sivak P.A. Диффузионные характеристики кластеров собственных междоузельных атомов в ванадии: молекулярно-динамические данные // ФММ. 2023. T. 124. № 5. С. 400–408.
- Dederichs P.H., Schroeder K. Anisotropic diffusion in stress fields // Phys. Rev. B. 1978. V. 17. P. 2524‒2436.
- Sivak A.B., Sivak P.A., Romanov V.A., Chernov V.M. Dislocation sinks efficiencies for self-point defects in iron and vanadium crystals // Inorg. Mater.: Appl. Res. 2015. V. 6. No. 2. P. 105–113.
- Демидов Д.Н., Сивак А.Б., Сивак П.А. Кристаллографические, энергетические и диффузионные характеристики димежузлий в ОЦК-металлах Fe и V // ВАНТ. Сер. Термоядерный синтез. 2019. Т. 42. № 3. С. 85–96.
- Романов В.А., Сивак А.Б., Чернов В.М. Кристаллографические, энергетические и кинетические свойства собственных точечных дефектов и их кластеров в ОЦК-железе. 1. Полуэмпирическая модель ОЦК-железа и потенциал межатомного взаимодействия // ВАНТ. Сер. Материаловедение и новые материалы. 2006. Т. 66. № 1. С. 129–150.
- Романов В.А., Сивак А.Б., Сивак П.А., Чернов В.М. Равновесные и диффузионные характеристики собственных точечных дефектов в ванадии // ВАНТ. Сер. Термоядерный синтез. 2012. Т. 35. № 2. С. 60–80.
- Сивак А.Б., Демидов Д.Н., Сивак П.А. Эффективности дислокационных стоков для димежузлий в ОЦК (Fe, V) и ГЦК (Cu) металлах // ВАНТ. Сер. Материаловедение и новые материалы. 2021. Т. 109. № 3. С. 30–53.
- Wiedersich W. On the theory of void formation during irradiation // Radiat. Eff. 1972. V. 12. P. 111–125.
- Nichols F.A. On the estimation of sink-absorption terms in reaction-rate-theory analysis of radiation damage // J. Nucl. Mater. 1978. V. 75. P. 32–41.
- Trinkaus H., Heinisch H.L., Barashev A.V., Golubov S.I., Singh B.N. 1D to 3D diffusion-reaction kinetics of defects in crystals // Phys. Rev. B. 2002. V. 66. No. 6. 060105(R).
Дополнительные файлы
