Создание гидрофильных кремнийорганических покрытий и исследование их стойкости к факторам, сопровождающим коронный разряд
- Авторы: Емельяненко К.А.1, Рябкова О.А.1, Денман Н.1
-
Учреждения:
- Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
- Выпуск: Том 86, № 5 (2024)
- Страницы: 571-578
- Раздел: Статьи
- Статья получена: 27.02.2025
- Статья опубликована: 30.11.2024
- URL: https://medjrf.com/0023-2912/article/view/671952
- DOI: https://doi.org/10.31857/S0023291224050054
- ID: 671952
Цитировать
Аннотация
Современная электроэнергетика широко использует для транспортировки электроэнергии воздушные линии высокого напряжения, для которых характерны проблемы коронного разряда и токов утечки, особенно в условиях дождя и снега. Одним из подходов по решению этих проблем является создание защитных покрытий, которые могут снизить коронирование в неблагоприятных погодных условиях. В данной работе представлено исследование гидрофильного кремнийорганического покрытия на основе аминопропилтриэтоксисилана и полиэтиленгликоля-400 для алюминиевых проводов. Проведенные исследования по оценке устойчивости покрытия к длительному контакту с водой, УФ-излучению и насыщенной озоном атмосфере показали, что гидрофильность покрытия увеличивается при этих воздействиях, что улучшает его противокоронные свойства. Таким образом, разработанное покрытие обладает перспективами для применения в энергетике, поскольку проявляет стойкость в эксплуатационных условиях.
Ключевые слова
Полный текст

Об авторах
К. А. Емельяненко
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Автор, ответственный за переписку.
Email: emelyanenko.kirill@mail.ru
Россия, Москва
О. А. Рябкова
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: emelyanenko.kirill@mail.ru
Россия, Москва
Н. Денман
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: emelyanenko.kirill@mail.ru
Россия, Москва
Список литературы
- Бакай E.O. Экономико-статистический анализ потерь при передаче электроэнергии по высоковольтным проводам в России // Вестник ЮУрГУ. Серия “Экономика и менеджмент”. 2017. Т. 11. № 4. С. 117–125. https://doi.org/10.14529/em170416
- Sollerkvist F.J., Maxwell A., Rouden K., Ohnstad T.M. Evaluation, verification and operational supervision of corona losses in Sweden // IEEE Transactions on Power Delivery. 2007. V. 22. № 2. P.1210–1217. https://doi.org/10.1109/TPWRD.2006.881598
- Boinovich L.B., Emel’yanenko A.M., Pashinin A.S. Interactions of silicone rubbers designed for electrical engineering applications with aqueous media // Protection of Metals and Physical Chemistry of Surfaces. 2009. V. 45. № 1. P. 89–94. https://doi.org/10.1134/ S2070205109010146
- Chen L., Bian X., Wang L., Guan Z. Effect of rain drops on corona discharge in alternating current transmission lines with a corona cage // Japanese Journal of Applied Physics. 2012. V. 51. № 9. P. 09MG02. https://doi.org/10.1143/JJAP.51.09MG02
- Yin F., Farzaneh M., Jiang X. Electrical characteristics of an energized conductor under various weather conditions // High Voltage. 2017. V. 2. № 2. P. 102–109. https://doi.org/10.1049/hve.2016.0094
- Yin F., Farzaneh M., Jiang X. Laboratory investigation of AC corona loss and corona onset voltage on a conductor under icing conditions // IEEE Transactions on Dielectrics and Electrical Insulation. 2016. V. 23, № 3. P. 1862–1871. https://doi.org/ 10.1109/TDEI.2016.005626
- Мороз А.С., Ковалева В.Д., Морозов А.Г. Способ снижения потерь электроэнергии в ЛЭП 500 кВ и выше с учетом влияния погодных условий на коронный разряд // Актуальные проблемы энергетики. СНТК-74. 2018. P. 369–370.
- Emelyanenko K.A., Emelyanenko A.M., Boinovich L.B. Laser nanoengineered coatings for efficient energy transportation through corona discharge suppression // Optics & Laser Technology. 2024. V. 171. P. 110394. https://doi.org/10.1016/j.optlastec.2023.110394
- Emelyanenko K.A., Domantovsky A.G., Platonov P.S., Kochenkov P.S., Emelyanenko A.M., Boinovich L.B. The durability of superhydrophobic and slippery liquid infused porous surface coatings under corona discharge characteristic of the operation of high voltage power transmission lines // Energy Reports. 2022. V. 8. № 9. P. 6837–6844. https://doi.org/10.1016/j.egyr.2022.05.035
- Bousiou E.I., Mikropoulos P.N., Zagkanas V.N. Corona inception field of typical overhead line conductors under variable atmospheric conditions // Electric Power Systems Research. 2020. V. 178. P. 106032. https://doi.org/10.1016/j.epsr.2019.106032.
- Amin M., Akbar M., Amin S. Hydrophobicity of silicone rubber used for outdoor insulation (an overview) // Reviews on Advanced Materials Science. 2007. V. 16. P. 10–26.
- Xu P., Hedtke S., Zhang B., Pfeiffer M., Franck C.M., He J. HVAC corona current characteristics and audible noise during rain // IEEE Transactions on Power Delivery. 2020. V. 36, № 1. P. 331–338. http://dx.doi.org/10.1109/TPWRD.2020.2975803
- Schultz T., Pfeiffer M., Franck C.M. Optical investigation methods for determining the impact of rain drops on HVDC corona // Journal of Electrostatics. V. 77. P. 13–20. http://dx.doi.org/10.1016/j.elstat.2015.06.007
- Zhang X., Plaengpraphan C., Lian C., Li W., Han Q., Rowland S.M., Cotton I., Li Q. Degradation of superhydrophobic aluminium overhead line conductor surfaces // High Voltage. 2024. P. hve2.12455, https://doi.org/10.1049/hve2.12455.
- Lian C., Emersic C., Rajab F.H., Cotton I., Zhang X., Lowndes R., Li L. Assessing the superhydrophobic performance of laser micropatterned aluminium overhead line conductor material // IEEE Transactions on Power Delivery. 2021. P. 1–1. https://doi.org/10.1109/TPWRD.2021.3074946.
- Lian C., Zhang X., Emersic C., Lowndes R., Cotton I. Long-term durability of stearic acid silicon dioxide nanoparticle superhydrophobic coating on aluminium alloy overhead line conductors // 2019 IEEE Electrical Insulation Conference (EIC) 2019 IEEE Electrical Insulation Conference (EIC). – Calgary, AB, Canada: IEEE. 2019. P. 238–241.
- Domantovsky A.G., Emelyanenko K.A., Emelyanenko A.M., Boinovich L.B. The influence of prolonged high concentration ozone exposure on superhydrophobic coatings in static and high-speed flow atmosphere // Materials. 2022. V. 15. № 16. P. 5725. https://doi.org/10.3390/ma15165725
- Montes Ruiz-Cabello F.J., Ibañez-Ibañez P., Paz-Gomez G., Cabrerizo-Vilchez M., Rodriguez-Valverde M.A. Fabrication of superhydrophobic metal surfaces for anti-icing applications // Journal of Visualized Experiments. 2018. № 138. P. 57635. https://doi.org/10.3791/57635.
- Boinovich L.B., Emelyanenko K.A., Domantovsky A.G., Emelyanenko A.M. Laser tailoring the surface chemistry and morphology for wear, scale and corrosion resistant superhydrophobic coatings // Langmuir. 2018. V. 34. P. 7059−7066. https://doi.org/10.1021/acs.langmuir.8b01317
- Domantovsky A.G., Chulkova E.V., Emelyanenko K.A., Maslakov K.I., Emelyanenko A.M., Boinovich L.B. Evolution of superhydrophilic aluminum alloy properties in contact with water during cyclic variation in temperature // Materials. 2022. V. 15. № 7. P. 2447. https://doi.org/10.3390/ma15072447
- Emelyanenko A.M., Boinovich L.B. Application of dynamic thresholding of video images for measuring the interfacial tension of liquids and contact angles // Instruments and Experimental Techniques. 2002. V. 25. № 1. P. 44–49. https://doi.org/10.1023/A:1014544124713
- Ramanauskaite L., Snitka V. The synthesis of controlled shape nanoplasmonic silver-silica structures by combining sol-gel technique and direct silver reduction // Nanoscale Research Letters. 2015. V. 10. № 1. P. 133. https://doi.org/10.1186/s11671-015-0839-x
Дополнительные файлы
