Почему плотность ионов плазменного слоя зависит от плотности солнечного ветра?

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

По измерениям тяжелых (M/q > 3) ионов на спутнике Фобос-2 было обнаружено, что плотность этих ионов в центральном плазменном слое ареомагнитного хвоста пропорциональна плотности протонов солнечного ветра, обтекающего планету. При сравнении данных спутника ISEE-2, измерявшего ионы в околоземном плазменном слое вблизи нейтрального слоя, с данными по солнечному ветру, полученными на спутнике ISEE-3, было установлено, что плотность протонов околоземного плазменного слоя также пропорциональна плотности протонов солнечного ветра. Анализ баланса магнитного и плазменного давлений в солнечном ветре и внутри хвостов магнитосфер Марса и Земли показал, что выявленные ранее корреляции являются следствием необходимого равенства давлений на границе магнитосферы и внутри магнитных хвостов планет.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Г. Котова

Институт космических исследований РАН

Хат алмасуға жауапты Автор.
Email: kotova@iki.rssi.ru
Ресей, Москва

В. Безруких

Институт космических исследований РАН

Email: kotova@iki.rssi.ru
Ресей, Москва

Әдебиет тізімі

  1. Rosenbauer H., Shutte N., Apathy I. et al. Ions of Martian origin and plasma sheet in the Martian magnetosphere: initial results of the TAUS experiment // Nature. 1989. V. 341. Iss. 6243. P. 612–614. https://doi.org/10.1038/341612A0.
  2. Розенбауэр Х., Шютте Н., Апати И. и др. Первые результаты измерений ионов марсианского происхождения и обнаружение плазменного слоя в магнитосфере Марса по данным эксперимента ТАУС на КА «Фобос-2» // Письма АЖ. 1990. Т. 16. № 4. С. 368–377. (Rosenbauer H., Shutte N., Apathy I. et al. First measurements of ions of Martian origin and observation of a plasma layer in the magnetosphere of Mars: the TAUS experiment on the spacecraft Phobos 2 // Soviet Astron. Lett. 1990. V. 16. Iss. 2. P. 156–160.)
  3. Verigin M.I., Rosenbauer H., Shutte N.M. et al. Ions of planetary origin in the Martian magnetosphere (Phobos-2/TAUS experiment) // Planet. Space Sci. 1991. V. 39. Iss. 1/2. P. 131–137. https://doi.org/10.1016/0032-0633(91)90135-W
  4. Petrukovich A., Artemyev A., Vasko I. et al. Current Sheets in the Earth Magnetotail: Plasma and Magnetic Field Structure with Cluster Project Observations // Space Sci. Rev. 2015. V. 188. P. 311–337. https://doi.org/10.1007/s11214-014-0126-7.
  5. Maggiolo R., Kistler L.M. Spatial variation in the plasma sheet composition: Dependence on geomagnetic and solar activity // J. Geophys. Res. 2014. V. 119 P. 2836–2857. https://doi.org/10.1002/2013JA019517.
  6. Котова Г.А., Веригин М.И., Шютте Н.М. и др. Ускорение тяжелых ионов в хвосте магнитосферы Марса по данным экспериментов ТАУС и МАГМА на космическом аппарате Фобос-2 // Косм. исслед. 1999. Т. 37. № 1. С. 31–37. (Kotova G.A., Verigin M.I., Shutte N.M. et al. Acceleration of heavy ions in the Martian magnetosphere tail by the data of the TAUS and MAGMA experiments on the Phobos-2 spacecraft // Cosm. Res. 1999. V. 37. Iss. 1. P. 27–33.)
  7. Kotova G.A., Verigin M.I., Shutte N.M. et al. Planetary heavy ions in the magnetotail of Mars: Results of the TAUS and MAGMA experiments aboard PHOBOS // Adv. Space Res. 1997. V. 20. Iss. 2. P. 173–176. https://doi.org/10.1016/S0273-1177(97)00529-2
  8. Borovsky J.E., Thomsen M.F., McComas D.J. The superdense plasma sheet: Plasmaspheric origin, solar wind origin, or ionospheric origin // J. Geophys. Res. 1997. V. 102. Iss. A10. P. 22089–22097. https://doi.org/10.1029/96JA02469.
  9. Borovsky J.E., Thomsen M.F., Elphic R.C. The driving of the plasma sheet by the solar wind // J. Geophys. Res. 1998. V. 103. Iss. A8. P. 17617–17639. https://doi.org/10.1029/97JA02986.
  10. Nagy A.F., Cravens T.E. Hot oxygen atoms in the upper atmospheres of Venus and Mars // Geophys. Res. Lett. 1988. V. 15. P. 433–435. https://doi.org/10.1029/GL015i005p00433.
  11. Ip W.-H. On a hot oxygen corona of Mars // Icarus. 1988. V. 76. P. 135–145. https://doi.org/10.1016/0019-1035(88)90146-7.
  12. Rojas-Castillo D., Nilsson H., Stenberg Wieser G. Mass composition of the escaping flux at Mars: MEX observations // J. Geophys. Res. 2018. V. 123. P. 8806–8822. https://doi.org/10.1029/2018JA025423.
  13. Kotova G.A., Verigin M.I., Remizov A.P. et al. Study of the solar wind deceleration upstream of the Martian terminator bow shock // J. Geophys. Res. 1997. V. 102. Iss. A2. P. 2165–2173. https://doi.org/10.1029/96JA01533.
  14. Rosenbauer H., Verigin M., Kotova G. et al. The relationship between the magnetic field in the Martian magnetotail and solar wind parameters // J. Geopys. Res. 1994. V. 99. Iss. A9. P. 17199–17204. https://doi.org/10.1029/94JA00946.
  15. Ohtani S., Kokubun S. IMP 8 magnetic observations of the high-latitude tail boundary: locations and force balance // J. Geophys. Res. 1990. V. 95. Iss. A12. P. 20759–20769. https://doi.org/10.1029/JA095iA12p20759.
  16. Shue J.-H., Song P., Russe C.T. et al. Magnetopause location under extreme solar wind conditions // J. Geophys. Res. 1998. V. 103. Iss. A8. P. 17691–17700. https://doi.org/10.1029/98JA01103.
  17. Веригин М., Апати И., Котова Г. и др. Зависимость размеров и формы магнитопаузы Марса от динамического давления солнечного ветра по данным спутника Фобос-2 // Косм. исслед. 1996.Т. 34. № 6. С. 595–603. (Verigin M., Apathy I., Kotova G. et al. Dependence of Martian magnetopause shape and its dimensions on solar wind dynamic pressure according to Phobos-2 data // Cosm. Res. 1996. V. 34. Iss. 6. P. 551–558.)
  18. Trotignon J.G., Mazelle C., Bertucci C. et al. Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets // Planet Space Sci. 2006. V. 54. P. 357–369. https://doi.org/10.1016/j.pss.2006.01.003.
  19. Spreiter J.R., Alksne A.Y. Effect of neutral sheet currents on the shape and magnetic field of the magnetosphere // Planet. Space Sci. 1969. V. 17. P. 233. https://doi.org/10.1016/0032-0633(69)90040-3.
  20. Zhang T.-L., Schwingenschuh K., Russell C.T. et al. The flaring of the Martian magnetotail observed by the Phobos 2 spacecraft // Geophys. Res. Lett. 1994. V. 21. Iss. 12. P. 1121–1124. https://doi.org/10.1029/94GL01073.
  21. Bame S.J., Phillips J.L., McComas D.J. et al. The ULYSSES solar wind plasma investigation: Experiment description and initial in-ecliptic results // Solar Wind Seven. Eds. E. Marsch and R. Schwenn. Proc. the 3rd COSPAR Colloquium Held in Goslar. Germany. Pergamon. 1992. P. 139–142. https://doi.org/10.1016/B978-0-08-042049-3.50030-2.
  22. Baumjohann W., Paschmann G., Luhr H. Pressure balance between lobe and plasma sheet // Geophys. Res. Lett. 1990. V. 17. Iss. 1. P. 45–48. https://doi.org/10.1029/GL017i001p00045
  23. Знаткова С.С., Антонова Е.Е., Кирпичев И.П. и др. Давление плазмы под магнитопаузой на вечернем фланге в экваториальной плоскости при больших отрицательных ХGSM // Геомаг. Аэрон. 2018. Т. 58. № 6. С. 731–739. https://doi.org/10.1134/S0016794018060160. (Znatkova S.S., Antonova E.E., Kirpichev I.Pl, Pulinets M.S. Plasma pressure under magnetopause on the dusk flank in the equatorial plane for large negative ХGSM // Geom. Aeron. 2018. V. 59. P. 701–709. https://doi.org/10.1134/s0016793218060154.)
  24. Petrukovich A.A., Mukai T., Kokubun S. et al. Substorm-associated pressure variations in the magnetotail plasma sheet and lobe // J. Geophys. Res. 1999. V. 104. Iss. A3. P. 4501–4513. https://doi.org/10.1029/98JA02418.
  25. Petrinec S.M., Russell C.T. An empirical model of the size and shape of the near-earth magnetotail // Geophys. Res. Lett. 1993. V. 20. Iss. 23. P. 2695–2698. https://doi.org/10.1029/93GL02847.
  26. Nakai H., Kamide Y., Russell C.T. Influences of solar wind parameters and geomagnetic activity on the tail lobe magnetic field: a statistical study // J. Geophys. Res. 1991. V. 96. P. 5511–5523. https://doi.org/10.1029/90JA02361.
  27. Steinitz R., Eyni M. Global properties of the solar wind. I. The invariance of the momentum flux density // Astrophys. J. 1980. V. 241. P. 417–424. https://doi.org/10.1086/158355.
  28. Adebesin O.B., Ikubanni O.S., Kayode S.J. Solar wind dynamic pressure dependency on the plasma flow speed and IMF Bz during different geomagnetic activities // World J Young Researchers. 2012. V. 2(3) P. 43-54.
  29. Burlaga L.F., Ogilvie K.W. Magnetic and thermal pressures in the solar wind // Sol. Phys. 1970. V. 15. P. 61–71. https://doi.org/10.1007/BF00149472.
  30. Yang Z., Shen F.,·Zhang J. et al. Correlation between the magnetic field and plasma parameters at 1 AU // Solar Phys. 2018. V. 293. https://doi.org/10.1007/s11207-017-1238-5.
  31. Pérez-Alanis C.A., Janvier M., Nieves-Chinchilla T. et al. Statistical Analysis of Interplanetary Shocks from Mercury to Jupiter // Sol. Phys. 2023. V. 298. https://doi.org/10.1007/s11207-023-02152-3
  32. DiBraccio G.A., Espley J.R., Gruesbecket J.R. et al. Magnetotail dynamics at Mars: Initial MAVEN observations // Geophys. Res. Lett. 2015. V. 42. Iss. 21. P. 8828–8837. https://doi.org/10.1002/2015GL065248.
  33. Shutte N.M., Kiraly P., Cravens T.E. et al. Observation of electron and ion fluxes in the vicinity of Mars with the HARP spectrometer // Nature. 1989. V. 341. Iss. 6243. P. 614–616. https://doi.org/10.1038/341614a0
  34. Шютте Н., Кирай П., Кравенс Т. и др. Наблюдения потоков электронов и ионов в окрестности Марса при помощи спектрометра ХАРП на КА "Фобос-2" // Письма в АЖ. 1990. Т. 16. №. 4. (Shutte N., Kiraly P., Cravens T.E. et al. Observations of electron and ion flux in the vicinity of Mars using the HARP spectrometer on Phobos 2 // Soviet Astron. Lett. 1990. V. 16. Iss. 2. P. 154–156.)
  35. Kiraly P., Loch R., Szego K. et al. The HARP plasma experiment on-board the Phobos-2 spacecraft: Preliminary results // Planet. Space Sci. 1991. V. 39. Iss. 1/2. P. 139–146. https://doi.org/10.1016/0032-0633(91)90136-X.
  36. Halekas J.S., Brain D.A., Lin R.P. et al. Distribution and variability of accelerated electrons at Mars // J. Adv. Space Res. 2008. V. 41. Iss. 9. P. 1347–1352. https://doi.org/10.1016/j.asr.2007.01.034.
  37. Baumjohann W. The near-Earth plasma sheet: An AMPTE IRM perspective // Space Sci. Rev. 1993. V. 64. P. 141–163. https://doi.org/10.1007/BF00819660.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Energy spectra of ions measured by the TAUS instrument in the heavy ion registration mode on March 16, 1989, module B and BX component of the magnetic field, according to data from the MAGMA instrument. On the right, the solid line marks the sections of the trajectory in the solar wind, the bold line in the magnetosheath, and the dotted line in the magnetosphere of Mars. The crosses mark the locations of observations of heavy ion flows inside the magnetosphere [3].

Жүктеу (60KB)
3. Fig. 2. Dependence of the density of heavy ions (O+) near the neutral layer of the areomagnetic tail on the density of the undisturbed solar wind. o — measurements at entry into the areomagnetic tail, Δ — at exit from it.

Жүктеу (16KB)
4. Fig. 3. Dependence of the proton density of the plasma layer near the neutral layer of the geomagnetic tail on the density of the undisturbed solar wind according to data from the ISEE 2 and ISEE 3 satellites, respectively [9].

Жүктеу (18KB)
5. Fig. 4. Comparison of the total solar wind pressure with the magnetic field pressure in the lobes of the Martian magnetotail. The notations are the same as in Fig. 2. The solid line corresponds to equality of pressures.

Жүктеу (15KB)
6. Fig. 5. Dependence of the total solar wind pressure on the density of solar wind protons near Mars. The notations are the same as in Fig. 2. The solid line is the dependence pSW = 3.45×10-10(nSW)1.15.

Жүктеу (15KB)
7. Fig. 6. Dependence of the total solar wind pressure on the solar wind proton density according to ISEE 3 satellite data. The solid line is the dependence pSW = 7.0×10-10(nSW)0.82.

Жүктеу (19KB)
8. Fig. 7. Comparison of pressure in the central plasma layer and in the lobes of the magnetotail of Mars. The designations are the same as in Fig. 2.

Жүктеу (17KB)
9. Fig. 8. Two-dimensional spectra of oxygen ions measured on the second elliptical orbit of Phobos-2 near Mars on 05.II.1989. The dots mark the centers of the measurement intervals in the velocity space, in which the ion distribution function f was calculated. The outer contour line corresponds to f = 10-21 s3/cm-6, the value of f increases by 100.2 times towards the next inner contour line.

Жүктеу (2KB)
10. Fig. 9. Dependence of the ion density in the central plasma layer on the magnetic pressure in the tail lobes. The designations are the same as in Fig. 2.

Жүктеу (16KB)
11. Fig. 10. Dependence of the thermal pressure of protons in the plasma layer of the Earth’s magnetosphere on the dynamic pressure of the solar wind [9]

Жүктеу (19KB)

© Russian Academy of Sciences, 2024