THE INFLUENCE OF ELECTRON IRRADIATION ON THE STABILITY OF α-Fe2O3 NANOPARTICLES TO NATURAL AGING PROCESSES
- 作者: Kozlovskiy A.L.1, Rusakov V.S.2, Fadeev M.S.3
-
隶属关系:
- Gumilev Eurasian National University, Astana, 473021 Kazakhstan
- Moscow State University
- Lomonosov Moscow State University, Moscow, Russia
- 期: 卷 68, 编号 3 (2023)
- 页面: 474-482
- 栏目: НАНОМАТЕРИАЛЫ, КЕРАМИКА
- URL: https://medjrf.com/0023-4761/article/view/673474
- DOI: https://doi.org/10.31857/S0023476123600015
- EDN: https://elibrary.ru/WZMBXC
- ID: 673474
如何引用文章
详细
The influence of the modification of α-Fe2O3 nanoparticles by electron irradiation on their stability to natural aging processes during a long-term (three years) storage has been studied. Nanoparticles of this type (obtained by chemical vapor deposition with subsequent thermal annealing) were chosen due to the wide range of their practical applications. The changes in the properties of α-Fe2O3 nanoparticles during natural aging, depending on the irradiation dose, were investigated by X-ray diffraction and Mössbauer spectroscopy. It is found that modification by electron irradiation provides stability of α-Fe2O3 nanoparticles to hydration processes and phase transformations during a long-term storage; an increase in the irradiation dose increases the resistance to structural disordering during aging, thus retaining the nanoparticle properties for a long time.
作者简介
A. Kozlovskiy
Gumilev Eurasian National University, Astana, 473021 Kazakhstan
Email: kozlovskiy.a@inp.kz
Казахстан, Астана
V. Rusakov
Moscow State University
Email: rusakov@phys.msu.ru
Moscow, 119991 Russia
M. Fadeev
Lomonosov Moscow State University, Moscow, Russia
编辑信件的主要联系方式.
Email: kozlovskiy.a@inp.kz
Россия, Москва
参考
- Jang S., Hira S.A., Annas D. et al. // Processes. 2019. V. 7. № 7. P. 422. https://doi.org/10.3390/pr7070422
- Sharif H.M.A., Mahmood A., Cheng H.Y. et al. // ACS Appl. Nano Mater. 2019. V. 2. № 8. P. 5310. https://doi.org/10.1021/acsanm.9b01250
- Nasrollahzadeh M., Sajjadi M., Khonakdar H.A. // J. Mol. Struct. 2018. V. 1161. P. 453. https://doi.org/10.1016/j.molstruc.2018.02.026
- Yew Y.P., Shameli K., Miyake M. et al. // Arabian J. Chem. 2020. V. 13. № 1. P. 2287. https://doi.org/10.1016/j.arabjc.2018.04.013
- Yan S., Zhang X., Sun Y. et al. // Colloids Surf. B. 2014. V. 113. P. 302. https://doi.org/10.1016/j.colsurfb.2013.09.004
- Deotale A.J., Nandedkar R.V. // Materials Today: Proceedings. 2016. V. 3. № 6. P. 2069. https://doi.org/10.1016/j.matpr.2016.04.110
- Rajan A., Sharma M., Sahu N.K. // Sci. Rep. 2020. V. 10. № 1. P. 1. https://doi.org/10.1038/s41598-020-71703-6
- Jiang Q.L., Zheng S.W., Hong R.Y. et al. // Appl. Surf. Sci. 2014. V. 307. P. 224. https://doi.org/10.1016/j.apsusc.2014.04.018
- Patil R.M., Thorat N.D., Shete P.B. et al. // Mater. Sci. Eng. C. 2016. V. 59. P. 702. https://doi.org/10.1016/j.msec.2015.10.064
- Liu S., Yu B., Wang S. et al. // Adv. Colloid Interface Sci. 2020. V. 281. P. 102165. https://doi.org/10.1016/j.cis.2020.102165
- Lu W., Shen Y., Xie A., Zhang W. // J. Magn. Magn. Mater. 2010. V. 322. № 13. P. 1828. https://doi.org/10.1016/j.jmmm.2009.12.035
- Ganapathe L.S., Mohamed M.A., Mohamad Yunus R., Berhanuddin D.D. // Magnetochemistry. 2020. V. 6. № 4. P. 68. https://doi.org/10.3390/magnetochemistry6040068
- Castellanos-Rubio I., Arriortua O., Iglesias-Rojas D. et al. // Chem. Mater. 2021. V. 33. № 22. P. 8693. https://doi.org/10.1021/acs.chemmater.1c02654
- Kumar S., Kumar M., Singh A. // Contemp. Phys. 2021. V. 62. № 3. P. 144. https://doi.org/10.1080/00107514.2022.2080910
- Kozlovskiy A.L., Ermekova A.E., Korolkov I.V. et al. // Vacuum. 2019. V. 163. P. 236. https://doi.org/10.1016/j.vacuum.2019.02.029
- Jafari A., Shayesteh S.F., Salouti M., Boustani K. // J. Magn. Magn. Mater. 2015. V. 379. P. 305. https://doi.org/10.1016/j.jmmm.2014.12.050
- Liu S., Yu B., Wang S. et al. //Adv. Colloid Interface Sci. 2020. V. 281. P. 102165. https://doi.org/10.1016/j.cis.2020.102165
- Calatayud M.P., Sanz B., Raffa V. et al. // Biomaterials. 2014. V. 35. № 24. P. 6389. https://doi.org/10.1016/j.biomaterials.2014.04.009
- Zdorovets M.V., Kozlovskiy A.L., Fadeev M.S. et al. // Cer. Int. 2020. V. 46. № 9. P. 13580. https://doi.org/10.1016/j.ceramint.2020.02.143
- Zhao B., Wang Y., Guo H. et al. // Mater. Sci. Poland. 2007. V. 25. № 4. P. 1143.
- Ganapathe L.S., Mohamed M.A., Mohamad Yunus R. et al. // Magnetochemistry. 2020. V. 6. № 4. P. 68. https://doi.org/10.3390/magnetochemistry6040068
- Koo K.N., Ismail A.F., Othman M.H.D. et al. // Malaysian J. Fundam. Appl. Sci. 2019. V. 15. № 1. P. 23.
- Salihov S.V., Ivanenkov Y.A., Krechetov S.P. et al. // J. Magn. Magn. Mater. 2015. V. 394. P. 173. https://doi.org/10.1016/j.jmmm.2015.06.012
- Matsnev M.E., Rusakov V.S. // AIP Conf. Proc. 2012. V. 1489. P. 178. https://doi.org/10.1063/1.4759488
- Fadeev M.S., Kozlovskiy A.L., Korolkov I.V. et al. // Colloids Surf. A. 2020. V. 603. P. 125178. https://doi.org/10.1016/j.colsurfa.2020.125178
- Rusakov V.S., Kozlovskiy A.L., Fadeev M.S. et al. // Nanomaterials. 2022. V. 12 (23). P. 4121. https://doi.org/10.3390/nano12234121
- Verwey E.J.W. // Nature. 1939. V. 144. P. 327. https://doi.org/10.1038/144327b0
- Yang J.B., Zhou X.D., Yelon W.B. et al. // J. Appl. Phys. 2004. V. 95. P. 7540. https://doi.org/10.1063/1.1669344
- Jones D.H., Srivastava K.K.P. // Phys. Rev. B.1986. V. 34. № 11. P. 7542. https://doi.org/10.1103/PhysRevB.34.7542
补充文件
