Малые ядрышковые РНК и длинные некодирующие РНК семейства SNHG в патогенезе рака яичников
- Авторы: Бурденный А.М.1,2, Логинов В.И.1,3, Фридман М.В.4, Кушлинский Н.Е.5, Брага Э.А.1,3
-
Учреждения:
- Научно-исследовательский институт общей патологии и патофизиологии
- Институт биохимической физики им. Н.М. Эмануэля Российской академии наук
- Медико-генетический научный центр им. академика Н.П. Бочкова
- Институт общей генетики им. Н.И. Вавилова Российской академии наук
- Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина Минздрава Российской Федерации
- Выпуск: Том 59, № 3 (2025)
- Страницы: 396-414
- Раздел: ОБЗОРЫ
- URL: https://medjrf.com/0026-8984/article/view/689587
- DOI: https://doi.org/10.31857/S0026898425030045
- EDN: https://elibrary.ru/PUGSHM
- ID: 689587
Цитировать
Полный текст



Аннотация
Обнаружение длинных некодирующих РНК (днРНК), в том числе днРНК семейства генов-хозяев малых ядрышковых РНК (мякРНК) — SNHG, привело к растущему интересу как к самим мякРНК, так и к генам, их кодирующим. На данный момент только у 32 из 232 известных генов мякРНК подтверждено наличие днРНК. При этом показана положительная корреляция экспрессии днРНК и мякРНК, кодируемых общим геном-хозяином семейства SNHG. Так, днРНК гена SNHG1 коррелирует с мякРНК SNORD22, SNORD25–31, а днРНК гена SNHG16 — с мякРНК SNORD1A, SNORD1B и SNORD1C. днРНК семейства SNHG могут участвовать в онкогенезе как за счет регуляторных функций, свойственных днРНК, так и путем влияния на биогенез рибосом. При этом накопилась информация о “внерибосомных” функциях мякРНК. Кроме краткого экскурса в биологические функции мякРНК и днРНК семейства SNHG, рассмотрена роль этих двух видов некодирующих РНК в патогенезе рака яичников, самого коварного рака женской репродуктивной системы. Обсуждается влияние этих регуляторных РНК на основные процессы онкогенеза яичников, такие как апоптоз, эпителиально-мезенхимальный переход, контроль клеточного цикла, на механизмы метилирования ДНК при этом виде рака. Обсуждаются также перспективы клинического применения регуляторных РНК, способных влиять на уровень лекарственной устойчивости.
Полный текст

Об авторах
А. М. Бурденный
Научно-исследовательский институт общей патологии и патофизиологии; Институт биохимической физики им. Н.М. Эмануэля Российской академии наук
Автор, ответственный за переписку.
Email: burdennyy@gmail.com
Россия, Москва, 125315; Москва, 119334
В. И. Логинов
Научно-исследовательский институт общей патологии и патофизиологии; Медико-генетический научный центр им. академика Н.П. Бочкова
Email: burdennyy@gmail.com
Россия, Москва, 125315; Москва, 115522
М. В. Фридман
Институт общей генетики им. Н.И. Вавилова Российской академии наук
Email: burdennyy@gmail.com
Россия, Москва, 117971
Н. Е. Кушлинский
Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина Минздрава Российской Федерации
Email: burdennyy@gmail.com
Россия, Москва, 115522
Э. А. Брага
Научно-исследовательский институт общей патологии и патофизиологии; Медико-генетический научный центр им. академика Н.П. Бочкова
Email: eleonora10_45@mail.ru
Россия, Москва, 125315; Москва, 115522
Список литературы
- Webb P.M., Jordan S.J. (2024) Global epidemiology of epithelial ovarian cancer. Nat. Rev. Clin. Oncol. 21(5), 389‒400.
- Hu Z., Yuan L., Yang X., Yi C., Lu J. (2024) The roles of long non-coding RNAs in ovarian cancer: from functions to therapeutic implications. Front. Oncol. 14, 1332528.
- Beňačka R., Szabóová D., Guľašová Z., Hertelyová Z., Radoňak J. (2023) Non-coding RNAs in human cancer and other diseases: overview of the diagnostic potential. Int. J. Mol. Sci. 24(22), 16213.
- Wang J., Zhu S., Meng N., He Y., Lu R., Yan G.R. (2019) ncRNA-encoded peptides or proteins and cancer. Mol. Ther. 27(10), 1718–1725.
- Zimta A.A., Tigu A.B., Braicu C., Stefan C., Ionescu C., Berindan-Neagoe I. (2020) An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes. Front. Oncol. 10, 389.
- Zhao M., Zhang Y., Shen S. (2023) A novel regulator in cancer initiation and progression: long noncoding RNA SHNG9. Clin. Transl. Oncol. 25(6), 1512–1521.
- Xiao H., Feng X., Liu M., Gong H., Zhou X. (2023) SnoRNA and lncSNHG: advances of nucleolar small RNA host gene transcripts in anti-tumor immunity. Front. Immunol. 14, 1143980.
- Huldani H., Gandla K., Asiri M., Romero-Parra R.M., Alsalamy A., Hjazi A., Najm M.A.A., Fawaz A., Hussien B.M., Singh R. (2023) A comprehensive insight into the role of small nucleolar RNAs (snoRNAs) and SNHGs in human cancers. Pathol. Res. Pract. 249, 154679.
- Monziani A., Ulitsky I. (2023) Noncoding snoRNA host genes are a distinct subclass of long noncoding RNAs. Trends Genet. 39(12), 908–923.
- Zheng H., Wang G., Wang Y., Liu J., Ma G., Du J. (2023) Systematic analysis reveals a pan-cancer SNHG family signature predicting prognosis and immunotherapy response. iScience. 26(10), 108055.
- Dsouza V.L., Adiga D., Sriharikrishnaa S., Suresh P.S., Chatterjee A., Kabekkodu S.P. (2021) Small nucleolar RNA and its potential role in breast cancer — a comprehensive review. Biochim. Biophys. Acta Rev. Cancer. 1875(1), 188501.
- Webster S.F., Ghalei H. (2023) Maturation of small nucleolar RNAs: from production to function. RNA Biol. 20(1), 715–736.
- Beneventi G., Munita R., Cao Thi Ngoc P., Madej M., Cieśla M., Muthukumar S., Krogh N., Nielsen H., Swaminathan V., Bellodi C. (2021) The small Cajal body-specific RNA 15 (SCARNA15) directs p53 and redox homeostasis via selective splicing in cancer cells. NAR Cancer. 3(3), zcab026.
- Брага Э.А., Филиппова Е.А., Урошлев Л.А., Лукина С.С., Пронина И.В., Казубская Т.П., Кушлинский Д.Н., Логинов В.И., Фридман М.В., Бурдённый А.М., Кушлинский Н.Е. (2024) Гены днРНК семейства SNHGs: кометилирование и общие функции при раке яичников. Биохимия. 89(11), 1–18
- Bratkovič T., Rogelj B. (2011) Biology and applications of small nucleolar RNAs. Cell. Mol. Life Sci. 68(23), 3843–3851.
- Huang Z.H., Du Y.P., Wen J.T., Lu B.F., Zhao Y. (2022) snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discov. 8(1), 259.
- Bachellerie J.P., Cavaillé J., Hüttenhofer A. (2002) The expanding snoRNA world. Biochimie. 84(8), 775–790.
- Xiong Q., Zhang Y., Li J., Zhu Q. (2022) Small non-coding RNAs in human cancer. Genes (Basel). 13(11), 2072.
- Zacchini F., Barozzi C., Venturi G., Montanaro L. (2024) How snoRNAs can contribute to cancer at multiple levels. NAR Cancer. 6(1), zcae005.
- Faucher-Giguère L., Roy A., Deschamps-Francoeur G., Couture S., Nottingham R.M., Lambowitz A.M., Scott M.S., Abou Elela S. (2022) High-grade ovarian cancer associated H/ACA snoRNAs promote cancer cell proliferation and survival. NAR Cancer. 4(1), zcab050.
- Chen S., Li Q.H., Chen X., Bao H.J., Wu W., Shen F., Lu B.F., Jiang R.Q., Zong Z.H., Zhao Y. (2022) SNORA70E promotes the occurrence and development of ovarian cancer through pseudouridylation modification of RAP1B and alternative splicing of PARPBP. J. Cell Mol. Med. 26(20), 5150–5164.
- Zhang L., Ma R., Gao M., Zhao Y., Lv X., Zhu W., Han L., Su P., Fan Y., Yan Y., Zhao L., Ma H., Wei M., He M. (2020) SNORA72 activates the Notch1/c-Myc pathway to promote stemness transformation of ovarian cancer cells. Front. Cell Dev. Biol. 8, 583087. Erratum in: Front. Cell Dev. Biol. 2022. 10, 819798.
- Zhu W., Niu J., He M., Zhang L., Lv X., Liu F., Jiang L., Zhang J., Yu Z., Zhao L., Bi J., Yan Y., Wei Q., Huo H., Fan Y., Chen Y., Ding J., Wei M. (2019) SNORD89 promotes stemness phenotype of ovarian cancer cells by regulating Notch1-c-Myc pathway. J. Transl. Med. 17(1), 259.
- Zhu W., Zhang T., Luan S., Kong Q., Hu W., Zou X., Zheng F., Han W. (2022) Identification of a novel nine-snoRNA signature with potential prognostic and therapeutic value in ovarian cancer. Cancer Med. 11(10), 2159–2170.
- Yang Y., Zhang H., Xie Y., Zhang S., Zhu J., Yin G., Shu G., Zhang Y. (2018) Preliminary screening and identification of differentially expressed metastasis-related ncRNAs in ovarian cancer. Oncol. Lett. 15(1), 368–374.
- Уткин О.В., Новиков В.В. (2007) Регуляция апоптоза с помощью альтернативного сплайсинга матричной РНК. Рос. Биотерап. Журн. 6(2), 13–20.
- Mohammad R.M., Muqbil I., Lowe L., Yedjou C., Hsu H.Y., Lin L.T., Siegelin M.D., Fimognari C., Kumar N.B., Dou Q.P., Yang H., Samadi A.K., Russo G.L., Spagnuolo C., Ray S.K., Chakrabarti M., Morre J.D., Coley H.M., Honoki K., Fujii H., Georgakilas A.G., Amedei A., Niccolai E., Amin A., Ashraf S.S., Helferich W.G., Yang X., Boosani C.S., Guha G., Bhakta D., Ciriolo M.R., Aquilano K., Chen S., Mohammed S.I., Keith W.N., Bilsland A., Halicka D., Nowsheen S., Azmi A.S. (2015) Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol. 35(Suppl), S78–S103.
- Gao J., Liu M., Zou Y., Mao M., Shen T., Zhang C., Song S., Sun M., Zhang S., Wang B., Zhu D., Li P. (2015) Long non-coding RNA growth arrest-specific transcript 5 is involved in ovarian cancer cell apoptosis through the mitochondria-mediated apoptosis pathway. Oncol. Rep. 34(6), 3212–3221.
- Liu E.L., Zhou Y.X., Li J., Zhang D.H., Liang F. (2020) Long-chain non-coding RNA SNHG3 promotes the growth of ovarian cancer cells by targeting miR-339-5p/TRPC3 axis. OncoTargets Ther. 13, 10959–10971.
- Liu C., Zhao S., Lv Z.X., Zhao X.J. (2023) Promoting action of long non-coding RNA small nucleolar RNA host gene 4 in ovarian cancer. Acta Biochim. Pol. 70(1), 59–68.
- Miao W., Lu T., Liu X., Yin W., Zhang H. (2020) LncRNA SNHG8 induces ovarian carcinoma cells cellular process and stemness through Wnt/β-catenin pathway. Cancer Biomark. 28(4), 459–471.
- Wang Y., Ding M., Yuan X., Jiao R., Zhu D., Huang W., Deng W., Liu Y. (2021) LncRNA SNHG15 promotes ovarian cancer progression through regulated CDK6 via sponging miR-370-3p. Biomed Res. Int. Article ID9394563.
- Zhao W., Ma X., Liu L., Chen Q., Liu Z., Zhang Z., Ma S., Wang Z., Li H., Wang Z., Wu J. (2019) SNHG20: a vital lncRNA in multiple human cancers. J. Cell Physiol. 234(9), 14519–14525.
- Yang Q., Dong Y.J. (2021) LncRNA SNHG20 promotes migration and invasion of ovarian cancer via modulating the microRNA-148a/ROCK1 axis. J. Ovarian Res. 14(1), 168.
- Wang W., Yu S., Li W., Hu H., Zou G. (2022) Silencing of lncRNA SNHG17 inhibits the tumorigenesis of epithelial ovarian cancer through regulation of miR-485–5p/AKT1 axis. Biochem. Biophys. Res. Commun. 637, 117–126.
- Gugnoni M., Ciarrocchi A. (2019) Long noncoding RNA and epithelial mesenchymal transition in cancer. Int. J. Mol. Sci. 20(8), 1924.
- Wu Y., Zhu B., Yan Y., Bai S., Kang H., Zhang J., Ma W., Gao Y., Hui B., Li R., Zhang X., Ren J. (2021) Long non-coding RNA SNHG1 stimulates ovarian cancer progression by modulating expression of miR-454 and ZEB1. Mol. Oncol. 15(5), 1584–1596.
- Su M., Huang P., Li Q. (2023) Long noncoding RNA SNHG6 promotes the malignant phenotypes of ovarian cancer cells via miR-543/YAP1 pathway. Heliyon. 9(5), e16291.
- Seborova K., Vaclavikova R., Rob L., Soucek P., Vodicka P. (2021) Non-coding RNAs as biomarkers of tumor progression and metastatic spread in epithelial ovarian cancer. Cancers (Basel). 13(8), 1839.
- Lv W., Jia Y., Wang J., Duan Y., Wang X., Liu T., Hao S., Liu L. (2022) Long non-coding RNA SNHG10 upregulates BIN1 to suppress the tumorigenesis and epithelial-mesenchymal transition of epithelial ovarian cancer via sponging miR-200a-3p. Cell Death Discov. 8(1), 60.
- Lamouille S., Xu J., Derynck R. (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell. Biol. 15(3), 178–196.
- Zhang D., Cao C., Liu L., Wu D. (2016) Up-regulation of lncRNA SNHG20 predicts poor prognosis in hepatocellular carcinoma. J. Cancer. 7(5), 608–617.
- Liu J., Lu C., Xiao M., Jiang F., Qu L., Ni R. (2017) Long non-coding RNA SNHG20 predicts a poor prognosis for HCC and promotes cell invasion by regulating the epithelial-to-mesenchymal transition. Biomed. Pharmacother. 89, 857–863.
- Li C., Zhou L., He J., Fang X.Q., Zhu S.W., Xiong M.M. (2016) Increased long noncoding RNA SNHG20 predicts poor prognosis in colorectal cancer. BMC Cancer. 16, 655.
- He S., Zhao Y., Wang X., Deng Y., Wan Z., Yao S., Shen H. (2018) Up-regulation of long non-coding RNA SNHG20 promotes ovarian cancer progression via Wnt/β-catenin signaling. Biosci. Rep. 38(1), BSR20170681.
- Li B., Cai S., Zhao Y., He Q., Yu X., Cheng L., Zhang Y., Hu X., Ke M., Chen S., Zou M. (2016) Nerve growth factor modulates the tumor cells migration in ovarian cancer through the WNT/β-catenin pathway. Oncotarget. 7(49), 81026–81048.
- Arend R.C., Londoño-Joshi A.I., Gangrade A., Katre A.A., Kurpad C., Li Y., Samant R.S., Li P.K., Landen C.N., Yang E.S., Hidalgo B., Alvarez R.D., Straughn J.M., Forero A., Buchsbaum D.J. (2016) Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget. 7(52), 86803–86815. Erratum in: Oncotarget. 9(27), 19459 (2018).
- Shen S., Chen J., Li H., Jiang Y., Wei Y., Zhang R., Zhao Y., Chen F. (2023) Large-scale integration of the non-coding RNAs with DNA methylation in human cancers. Cell Rep. 42(3), 112261.
- Yin X., Hu L., Xu Y. (2022) Structure and function of TET enzymes. Adv. Exp. Med. Biol. 1389, 239–267.
- Rasmussen K.D., Helin K. (2016) Structure and function of TET enzymes. Genes Dev. 30(7), 733–750.
- Han X., Zhou Y., You Y., Lu J., Wang L., Hou H., Li J., Chen W., Zhao L., Li X. (2017) TET1 promotes cisplatin-resistance via demethylating the vimentin promoter in ovarian cancer. Cell Biol. Int. 41(4), 405–414.
- Xu X., Yuan X., Ni J., Guo J., Gao Y., Yin W., Li F., Wei L., Zhang J. (2021) MAGI2-AS3 inhibits breast cancer by downregulating DNA methylation of MAGI2. J. Cell Physiol. 236(2), 1116–1130.
- Yan F., Zhao W., Xu X., Li C., Li X., Liu S., Shi L., Wu Y. (2020) LncRNA DHRS4-AS1 inhibits the stemness of NSCLC cells by sponging miR-224-3p and upregulating TP53 and TET1. Front. Cell Dev. Biol. 8, 585251.
- He S.L., Chen Y.L., Chen Q.H., Tian Q., Yi S.J. (2022) LncRNA KCNQ1OT1 promotes the metastasis of ovarian cancer by increasing the methylation of EIF2B5 promoter. Mol. Med. 28(1), 112.
- Hu Y., Ma Z., He Y., Liu W., Su Y., Tang Z. (2017) LncRNA-SNHG1 contributes to gastric cancer cell proliferation by regulating DNMT1. Biochem. Biophys. Res. Commun. 491(4), 926–931.
- Li S.J., Wang L., Sun Z.X., Sun S.J., Gao J., Ma R.L. (2019) LncRNA SNHG1 promotes liver cancer development through inhibiting p53 expression via binding to DNMT1. Eur. Rev. Med. Pharmacol. Sci. 23(7), 2768–2776.
- Li W., Ma X., Wang F., Chen S., Guo Q., Sun F., Duan Y. (2022) SNHG3 affects gastric cancer development by regulating SEPT9 methylation. J. Oncol. Article ID3433406.
- Han X., Zhen S., Ye Z., Lu J., Wang L., Li P., Li J., Zheng X., Li H., Chen W., Li X., Zhao L. (2017) A feedback loop between miR-30a/c-5p and DNMT1 mediates cisplatin resistance in ovarian cancer cells. Cell Physiol. Biochem. 41(3), 973–986.
- Yang S.N., Zhong L.Y., Sun Y.H., Wang C., Ru W.J., Liu R.Z., Dai W., Xie X.M., Li S.D. (2022) Downregulation of lncRNA SNHG16 inhibits vascular smooth muscle cell proliferation and migration in cerebral atherosclerosis by targeting the miR-30c-5p/SDC2 axis. Heart Vessels. 37(6), 1085–1096.
- Бурдённый А.М., Филиппова Е.А., Лукина С.С., Иванова Н.А., Пронина И.В., Логинов В.И., Казубская Т.П., Кушлинский Н.Е., Брага Э.А. (2023) ДНК-метилирование группы генов длинных некодирующих РНК на разных этапах диссеминации рака яичников. Бюлл. Эксп. Биол. Мед.176(10), 498–504.
- Braga E.A., Burdennyy A.M., Uroshlev L.A., Zaichenko D.M., Filippova E.A., Lukina S.S., Pronina I.V., Astafeva I.R., Fridman M.V., Kazubskaya T.P., Loginov V.I., Dmitriev A.A., Moskovtsev A.A., Kushlinskii N.E. (2024) Ten hypermethylated lncRNA genes are specifically involved in the initiation, progression, and lymphatic and peritoneal metastasis of epithelial ovarian cancer. Int. J. Mol. Sci. 25(21), 11843.
- Hanahan D., Weinberg R.A. (2011) Hallmarks of cancer: the next generation. Cell. 144(5), 646–674.
- Shepherd T.G., Dick F.A. (2022) Principles of dormancy evident in high-grade serous ovarian cancer. Cell Div. 17(1), 2.
- Kitagawa M., Kitagawa K., Kotake Y., Niida H., Ohhata T. (2013) Cell cycle regulation by long non-coding RNAs. Cell. Mol. Life Sci. 70(24), 4785–4794.
- Zhao Y.L., Huang Y.M. (2019) LncSNHG14 promotes ovarian cancer by targeting microRNA-125a-5p. Eur. Rev. Med. Pharmacol. Sci. 23(8), 3235–3242.
- Wu Y., Deng Y., Guo Q., Zhu J., Cao L., Guo X., Xu F., Weng W., Ju X., Wu X. (2019) Long non-coding RNA SNHG6 promotes cell proliferation and migration through sponging miR-4465 in ovarian clear cell carcinoma. J. Cell. Mol. Med. 23(8), 5025–5036.
- Sun J., Tian X., Lu S.Q., Hu H.B. (2017) MicroRNA-4465 suppresses tumor proliferation and metastasis in non-small cell lung cancer by directly targeting the oncogene EZH2. Biomed. Pharmacother. 96, 1358–1362.
- Guo J., Cai J., Yu L., Tang H., Chen C., Wang Z. (2011) EZH2 regulates expression of p57 and contributes to progression of ovarian cancer in vitro and in vivo. Cancer Sci. 102(3), 530–539.
- Kim K.H., Roberts C.W. (2016) Targeting EZH2 in cancer. Nat. Med. 22(2), 128–134.
- Chen G.Y., Zhang Z.S., Chen Y., Li Y. (2021) Long non-coding RNA SNHG9 inhibits ovarian cancer progression by sponging microRNA-214-5p. Oncol. Lett. 21(2), 80.
- Zhang J., Zhang R., Ye Y. (2021) Long non-coding RNA (LncRNA) SNHG7/eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) involves in the malignant events of ovarian cancer cells with paclitaxel resistance. Bioengineered. 12(2), 10541–10552.
- Long X., Song K., Hu H., Tian Q., Wang W., Dong Q., Yin X., Di W. (2019) Long non-coding RNA GAS5 inhibits DDP-resistance and tumor progression of epithelial ovarian cancer via GAS5-E2F4-PARP1-MAPK axis. J. Exp. Clin. Cancer Res. 38(1), 345.
- Ortiz M., Wabel E., Mitchell K., Horibata S. (2022) Mechanisms of chemotherapy resistance in ovarian cancer. Cancer Drug Resist. 5(2), 304–316.
- Jiang W., Xia J., Xie S., Zou R., Pan S., Wang Z.W., Assaraf Y.G., Zhu X. (2020) Long non-coding RNAs as a determinant of cancer drug resistance: towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resist. Updat. 50, 100683.
- Tripathi M.K., Doxtater K., Keramatnia F., Zacheaus C., Yallapu M.M., Jaggi M., Chauhan S.C. (2018) Role of lncRNAs in ovarian cancer: defining new biomarkers for therapeutic purposes. Drug Discov. Today. 23(9), 1635–1643.
- Abildgaard C., do Canto L.M., Rainho C.A., Marchi F.A., Calanca N., Waldstrøm M., Steffensen K.D., Rogatto S.R. (2022) The long non-coding RNA SNHG12 as a mediator of carboplatin resistance in ovarian cancer via epigenetic mechanisms. Cancers (Basel). 14(7), 1664.
- Feng S., Yin H., Zhang K., Shan M., Ji X., Luo S., Shen Y. (2022) Integrated clinical characteristics and omics analysis identifies a ferroptosis and iron-metabolism-related lncRNA signature for predicting prognosis and therapeutic responses in ovarian cancer. J. Ovarian Res. 15(1), 10.
- Wang H., Zhou Y., Zhang S., Qi Y.A., Wang M. (2022) PRPF6 promotes metastasis and paclitaxel resistance of ovarian cancer via SNHG16/CEBPB/GATA3 axis. Oncol. Res. 29(4), 275–289.
- El-Arabey A.A., Abdalla M., Abd-Allah A.R. (2020) GATA3 and stemness of high-grade serous ovarian carcinoma: novel hope for the deadliest type of ovarian cancer. Hum. Cell. 33(3), 904–906.
- El-Arabey A.A., Denizli M., Kanlikilicer P., Bayraktar R., Ivan C., Rashed M., Kabil N., Ozpolat B., Calin G.A., Salama S.A., Abd-Allah A.R., Sood A.K., Lopez-Berestein G. (2020) GATA3 as a master regulator for interactions of tumor-associated macrophages with high-grade serous ovarian carcinoma. Cell Signal. 68, 109539. Erratum in: Cell Signal. 89, 110147 (2022).
- Pei M.L., Zhao Z.X., Shuang T. (2020) Dysregulation of lnc-SNHG1 and miR-216b-5p correlate with chemoresistance and indicate poor prognosis of serous epithelial ovarian cancer. J. Ovarian Res. 13(1), 144.
- Lin H., Shen L., Lin Q., Dong C., Maswela B., Illahi G.S., Wu X. (2020) SNHG5 enhances Paclitaxel sensitivity of ovarian cancer cells through sponging miR-23a. Biomed. Pharmacother. 123, 109711.
- Bai Z., Wu Y., Bai S., Yan Y., Kang H., Ma W., Zhang J., Gao Y., Hui B., Ma H., Li R., Zhang X., Ren J. (2020) Long non-coding RNA SNHG7 is activated by SP1 and exerts oncogenic properties by interacting with EZH2 in ovarian cancer. J. Cell Mol. Med. 24(13), 7479–7489.
- Yu Z., Wang Y., Wang B., Zhai J. (2022) Metformin affects paclitaxel sensitivity of ovarian cancer cells through autophagy mediated by long noncoding RNA SNHG7/miR-3127–5p axis. Cancer Biother. Radiopharm. 37(9), 792–801.
- Zhang P.F., Wu J., Luo J.H., Li K.S., Wang F., Huang W., Wu Y., Gao S.P., Zhang X.M., Zhang P.N. (2019) SNHG22 overexpression indicates poor prognosis and induces chemotherapy resistance via the miR-2467/Gal-1 signaling pathway in epithelial ovarian carcinoma. Aging (Albany NY) 11(19), 8204–8216.
Дополнительные файлы
