Биметаллические катализаторы в окислительном обессеривании углеводородных фракций (обзор)
- Authors: Анисимов А.В.1, Акопян А.В.1, Синикова Н.А.1, Гуль О.О.1
-
Affiliations:
- Московский государственный университет имени М. В. Ломоносова
- Issue: Vol 65, No 2 (2025)
- Pages: 77-96
- Section: Articles
- URL: https://medjrf.com/0028-2421/article/view/686731
- DOI: https://doi.org/10.31857/S0028242125020014
- EDN: https://elibrary.ru/KLGCTU
- ID: 686731
Cite item
Abstract
Рассмотрены проблемы окислительного обессеривания модельных углеводородных смесей и реальных моторных топлив в присутствии биметаллических гетерогенных катализаторов. Значительное внимание уделено работам по различным методам получения гетерогенных биметаллических катализаторов с использованием разнообразных твердых носителей. Обсуждается проявление такими каталитическими системами синергизма окислительных процессов, связанного с различными свойствами металлов в биметаллических системах, в том числе появлением у этих систем кислотных функций.
Full Text

About the authors
Александр Владимирович Анисимов
Московский государственный университет имени М. В. Ломоносова
Author for correspondence.
Email: sulfur45@mail.ru
ORCID iD: 0000-0001-9272-2913
химический факультет
Russian Federation, Москва, 119991Аргам Виликович Акопян
Московский государственный университет имени М. В. Ломоносова
Email: sulfur45@mail.ru
ORCID iD: 0000-0001-6386-0006
химический факультет
Russian Federation, Москва, 119991Наталья Александровна Синикова
Московский государственный университет имени М. В. Ломоносова
Email: sulfur45@mail.ru
ORCID iD: 0000-0001-7196-0082
химический факультет
Russian Federation, Москва, 119991Олеся Олеговна Гуль
Московский государственный университет имени М. В. Ломоносова
Email: sulfur45@mail.ru
ORCID iD: 0000-0001-6708-0058
химический факультет
Russian Federation, Москва, 119991References
- Mjalli F.S., Ahmed O.U., Al-Wahaibi T., Al-Wahaibi Y., AlNashef I.M. Deep oxidative desulfurization of liquid fuels // Reviews in Chem. Engineering. 2014. V. 30. № 4. P. 337‒378. https://doi.org/10.1515/revce-2014-0001
- ГОСТ 32139-2019. Межгосударственный стандарт. Нефть и нефтепродукты. Определение содержания серы методом энергодисперсионной рентгенофлуоресцентной спектрометрии.
- Hossain M.N., Park H.C., Choi H.S. A comprehensive review on catalytic oxidativedesulfurization of liquid fuel oil // Catalysts. 2019. V. 9. № 3. ID229. https://doi.org/10.3390/catal9030229
- Desai K., Dharaskar S., Khalid M., Gedam V. Effectiveness of ionic liquids in extractive–oxidative desulfurization of liquid fuels: a review // Chem. Pap. 2022. V. 76. № 4. P. 1989–2028. https://doi.org/10.1007/s11696-021-02038-3
- Sikarwar P., Gosu V., Subbaramaiah V. An overview of conventional and alternative technologies for the production of ultra-low-sulfur fuels // Rev. Chem. Eng. 2019. V. 35. № 6. P. 669–705. https://doi.org/10.1515/revce-2017-0082
- Mohamed Magdy E.-S., Al-Yacoub Z.H., Vadakumar J.V. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria // Front. Microbiol., Sec. Microbiotechnology. 2015. V. 6. ID112 https://doi.org/10.3389/fmicb.2015.00112
- Malani R.S., Batghare A.H., Bhasarkar J.B., Moholkar V.S. Kinetic modelling and process engineering aspects of biodesulfurization of liquid fuels: Review and analysis // Bioresour. Technol. Rep. 2021. V. 14. ID100668. https://doi.org/10.1016/j.biteb.2021.100668
- Li J., Yang Z., Li S., Jin Q., Zhao J. Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts // J. Ind. Eng. Chem. 2020. V. 82. P. 1–16. https://doi.org/10.1016/j.jiec.2019.10.020
- Danmaliki G.I., Saleh T.A. Effects of bimetallic Ce/Fe nanoparticles on the desulfurization of thiophenes using activated carbon // Chem. Eng. J. 2017. V. 307. P. 914–927. https://doi.org/10.1016/j.cej.2016.08.143
- Shah S.S., Ahmad I., Ahmad W., Ishaq M., Khan H. Deep desulphurization study of liquid fuels using acid treated activated charcoal as adsorbent // Energy Fuels. 2017. V. 31. P. 7867–7873. https://doi.org/10.1021/acs.energyfuels.7b00914
- Muhammad Nobi Hossain, Hoon Chae Park, Hang Seok Choi. A comprehensive review on catalytic oxidative desulfurization of liquid fuel oil // Catalysts. 2019. V. 9. № 3. ID229. 10.3390/catal9030229' target='_blank'>https://doi: 10.3390/catal9030229
- Xian Bin Lim ab, Wee-Jun Ong. A current overview of the oxidative desulfurization of fuels utilizing heat and solar light: from materials design to catalysis for clean energy // Nanoscale Horiz. 2021. V. 6. P. 588–633 https://doi.org/10.1039/d1nh00127b
- Haruna A., Merican Z.A., Musa S.G. Recent advances in catalytic oxidative desulfurization of fuel oil: A review // J. Ind. Eng. Chem. 2022. V. 112. P. 20–36. https://doi.org/10.1016/j.jiec.2022.05.023
- Khalid H., Umar A., Saeed M.H., Nazir M.S., Akhtat T., Ikhlaq A., Ali Z., Hassan S.U. Advances in fuel oil desulfurization: a comprehensive review of polyoxometalate catalysts // J. Ind. Eng. Chem. 2025. V. 141. P. 32–45. http://doi.org/10.1016/j.jec.2024.06.043
- Houda S., Lancelot C., Blanchard P., Poinel L., Lamonier C. Oxidative desulfurization of heavy oils with high sulfur content: A review // Catalysts. 2018. V. 8. № 9. ID344. https://doi.org/10.3390/catal8090344
- Liu F., Yu J., Qazi A.B., Zhang L., Liu X. Metal-based ionic liquids in oxidative desulfurization: a critical review // Environ. Sci. Technol. 2021. V. 55. № 3. P. 1419–1435. https://doi.org/10.1021/acs.est.0c05855
- Yuan B., Li X., Sun Y. A short review of aerobic oxidative desulfurization of liquid fuels over porous materials // Catalysts. 2022. V. 12. № 2. ID129. https://doi.org/10.3390/catal12020129
- Crucianelli M., Bizzarri B.M., Saladino R. SBA-15 anchored metal containing catalysts in the oxidative desulfurization process // Catalysts. 2019. V. 9. № 12. ID984. https://doi.org/10.3390/catal9120984
- Xiong J., Zhu W., Ding W., Yang L., Zhang M., Jiang W., Zhao Z., Li H. Hydrophobic mesoporous silica-supported heteropolyacid induced by ionic liquid as a high efficiency catalyst for the oxidative desulfurization of fuel // RSC Adv. 2015. V. 5. № 22. P. 16847–16855. https://doi.org/10.1039/C4RA14382E
- Duan Z., Bian H., Gao Z., Zhu L., Xia D. Green fuel desulfurization with β-cyclodextrin aqueous solution for thiophenic sulfides by molecular inclusion // Energy Fuels. 2019. V. 33. № 10. P. 9690–9701. https://doi.org/10.1021/acs.energyfuels.9b02349
- Nurwita A., Stawicka K., Trejda M. SBA-15 type mesoporous silica modified with vanadium as a catalyst for oxidative and extractive oxidative desulfurization processes // Materials. 2024. V. 17. № 16. ID4041. https://doi.org/10.3390/ma17164041
- Truong T.H., Vu D.C., Pham X.N. Direct synthesis of Cu––SBA–16 photocatalysts and its application for the oxidative desulfurization of fuel oil model // Vietnam J. of Catalysis and Adsorption. 2024. V. 13. № 3. P. 36–41. https://doi.org/10.62239/jca.2024.055
- Moghadasi Z., Baghernia J. Preparation and identification of MCM-41 catalyst and its application in the oxidation reaction of sulfide to sulfoxide // Nanomaterials Chemistry. 2024. V. 2. № 1. P. 38–50. https://doi.org/10.22034/nc.2024.459131.1032
- Wang F., Xiao K., Shi L., Bing L., Han D., Wang G. Catalytic oxidative desulfurization of model fuel utilizing functionalized HMS catalysts: characterization, catalytic activity and mechanistic studies // React. Chem. Eng. 2021. V. 6. № 2. P. 289–296. https://doi.org/10.1039/D0RE00373E
- Ding Y., Wang J., Liao M., Li J., Zhang L., Guo J., Wu H. Deep oxidative desulfurization of dibenzothiophene by novel POM-based IL immobilized on well-ordered KIT-6 // Chem. Eng. J. 2021. V. 418. ID129470. https://doi.org/10.1016/j.cej.2021.129470
- Zou J., Lin Y., Wu S., Wu M., Yang C. Construction of bifunctional 3-D ordered mesoporous catalyst for oxidative desulfurization // Sep. Purif. Technol. 2021. V. 264. ID118434. https://doi.org/10.1016/j.seppur.2021.118434
- Nawaf A.T., Abdulmajeed B.A. Design of oscillatory helical baffled reactor and dual functional mesoporous catalyst for oxidative desulfurization of real diesel fuel // Chem. Eng. Res. Des. 2024. V. 209. P. 193–209. https://doi.org/10.1016/j.cherd.2024.07.032
- Lu Y., Yue C., Liu B., Zhang M., Li Y., Yang W., Lin Y., Pan Y., Sun D., Liu Y. The encapsulation of POM clusters into MIL-101 (Cr) at molecular level: MIL-101 (Cr), an efficient catalyst for oxidative desulfurization // Microporous Mesoporous Mater. 2021. V. 311. ID110694. https://doi.org/10.1016/j.micromeso.2020.110694
- We S., He H., Cheng Y., Yang C., Zeng G., Kang L., Qian H., Zhu C. Preparation, characterization, and catalytic performances of cobalt catalysts supported on KIT-6 silicas in oxidative desulfurization of dibenzothiophene // Fuel. 2017. V. 200. P. 11–21. https://doi.org/10.1016/j.fuel.2017.03.052
- Ahmadian M., Anbia M. Highly efficient oxidative desulfurization catalyzed by copper-based materials using hydrogen peroxide as oxidant // Fuel. 2022. V. 324. Pt. A. ID124471. https://doi.org/10.1016/j.fuel.2022.124471
- Guo H., Lu X., Zhang W., Zhang M., Zhao L., Zhou D., Xia Q. Highly efficient oxidation of various thioethers with molecular oxygen catalyzed by bimetallic SnMo-MOF // Mol. Catal. 2024. V. 569. ID114555. https://doi.org/10.1016/j.mcat.2024.114555
- Mokhtar W.N.A.W., Wan Abu Bakar W.A., Ali R., Kadir A.A.A. Development of bimetallic and trimetallic oxides doped on molybdenum oxide based material on oxidative desulfurization of diesel // Arab. J. Chem. 2018. V. 11. № 8. P. 1201–1208. https://doi.org/10.1016/j.arabjc.2016.04.020
- Otaghsaraei S.S., Kazemeini M., Hasannia S., Ekramipooya A. Deep oxidative desulfurization via rGOimmobilized tin oxide nanocatalyst: Experimental and theoretical perspectives // Adv. Powder Technol. 2022. V. 33. № 3. ID103499. https://doi.org/10.1016/j.apt.2022.103499
- Chen X., Luo J., Khan S., Shi R., Li P., Shi S., Hu J., Shi F. Thick pore walls mesoporous silicon composites based on phosphomolybdic acid: an efficient catalyst for oxidation desulfurization reaction // J. Phys. Chem. Solids. 2023. V. 173. ID111118. https://doi.org/10.1016/j.jpcs.2022.111118
- Said S., Abdelrahman A.A. Atomic layer deposition of on mesoporous γ- prepared by sol–gel method as efficient catalyst for oxidative desulfurization of refractory dibenzothiophene compound // J. Sol-Gel Sci. Technol. 2020. V. 95. P. 308–320. https://doi.org/10.1007/s10971-020-05332-w
- Boshagh F., Rahmani M., Rostami K., Yousefifar M. Key factors affecting the development of oxidative desulfurization of liquid fuels: a critical review // Energy Fuels. 2021. V. 36. № 1. P. 98–132. https://doi.org/10.1021/acs.energyfuels/c03396
- Yu L., Cui W.G., Zhang Q., Li Z.F., Shen Y., Hu T.L. Atomic layer deposition of nano-scale molybdenum sulfide within a metal–organic framework for highly efficient hydrodesulfurization // Mater. Adv. 2021. V. 2. № 4. P. 1294–1301. https://doi.org/10.1039/DOMA00955E
- Akbari A., Chamack M., Omidkhah M. Reverse microemulsion synthesis of polyoxometalate-based heterogeneous hybrid catalysts for oxidative desulfurization // J. Mater. Sci. 2020. V. 55. № 15. P. 6513–6524. https://doi.org/10.1007/s10853-020-04458-0
- Khan Z., Ali S. Oxidative desulphurization followed by catalytic adsorption method // S. Afr. J. Chem. Eng. 2013. V. 18. № 2. P. 14–28. https://hdl.handle.net/10520/EJC151789
- Oyewem A., Abdulkareem A.S., Tijani J.O., Bankole M.T., Abubakre O.K., Afolabi A.S., Roos W.D. Controlled syntheses of multi-walled carbon nanotubes from bimetallic Fe–Co catalyst supported on kaolin by chemical vapour deposition method // Arab. J. Sci. Eng. 2019. V. 44. P. 5411–5432. https://doi.org/10.1007/s13369-018-03696-4
- Yu W., Porosoff M.D., Chen J.G. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts // Chem. Rev. 2012. V. 112. № 11. P. 5780–5817. https://doi.org/10.1021/cr300096b
- Munnik P., de Jongh P.E., de Jong K.P. Recent developments in the synthesis of supported catalysts // Chem. Rev. 2015. V. 115. № 14. P. 6687–6718. https://doi.org/10.1021/cr500486u
- Pérez-Pastenes H., Núñez-Correa S., Pérez-López G., Ricardez-Sandoval L., Viveros-García T. 2-Propanol dehydration and dehydrogenation on Pt/ and Pt/ catalysts // Revista Mexicana de Ingeniería Química. 2021. V. 20. № 2. P. 1047–1058. https://doi.org/10.24275/rmiq/Cat2360
- Yang J., Zuo T., Lu J. Effect of preparation methods on the hydrocracking performance of NiMo/ catalysts // Chin. J. Chem. Eng. 2021. V. 32. P. 224–230. https://doi.org/10.1016/j.cjche.2020.06.009
- Hu Y., Zhang J., Huo H., Wang Z., Xu X., Yang Y., Lin K., Fan R. One-pot synthesis of bimetallic metal–organic frameworks (MOFs) as acid–base bifunctional catalysts for tandem reaction // Catal. Sci. Technol. 2020. V. 10. № 2. P. 315–322. https://doi.org/10.1039/C9CY01940E
- Nasresfahani Z., Kassaee M.Z. Nickel‒copper bimetallic mesoporous nanoparticles: as an efficient heterogeneous catalyst for N‐alkylation of amines with alcohols // Appl. Organomet. Chem. 2021. V. 35 № 1. ID e6032. https://doi.org/10.1002/aoc.6032
- Rex A., dos Santos J.H.Z. The use of sol–gel processes in the development of supported catalysts // J. Sol–Gel Sci. Technol. 2023. V. 105. № 1. P. 30–49. https://doi.org/10.1007/s10971-022-05975-x
- Zhang J., Chen T., Jiao Y., Cheng M., Wang L.-L., Wang J.-L., Li X.-Y., Chen Y.-Q. Improved activity of Ni–Mo/ bimetallic catalyst synthesized via sol–gel method for methylcyclohexane cracking // Petrol. Sci. 2021. V. 18. № 5. P. 1530–1542. https://doi.org/10.1016/j.petsci.2021.08.009
- Dongare S., Singh N., Bhunia H., Bajpai P.K. Electrochemical reduction of using oxide based Cu and Zn bimetallic catalyst // Electrochim. Acta. 2021. V. 392. ID138988. https://doi.org/10.1016/j.electacta.2021.138988
- Rudresha K., Zahir Hussain A., Ravikumar C.R., Anil Kumar M.R. Bimetallic CuO–ZnO hybrid nanocomposite materials for efficient remediation of environmental pollutants // ChemistrySelect. 2023. V. 8. № 29. ID e202300583. https://doi.org/10.1002/slct.202300583
- Брыжин А.А., Руднев В.С., Лукиянчук И.В., Василева М.С., Тарханова И.Г. Влияние состава оксидных слоев, полученных методом плазменно-электролитического оксидирования, на механизм пероксидного окисления сераорганических соединений // Кинетика и катализ. 2020. Т. 61. № 2. C. 262–270. https://doi.org/10.31857/S0453881120020021
- Брыжин А.А., Тарханова И.Г., Маслаков К.И., Николаев С.А., Гуревич С.А., Кожевин В.М., Явсин Д.А., Гантман М.Г., Ростовщикова Т.Н. Наноструктурированные NiMo- и NiW-катализаторы окисления тиофена, полученные методом лазерного электродиспергирования // Журн. физ. химии. 2019. Т. 93. № 10. C. 1575–1583. https://doi.org/10.1134/S0044453719100029
- Guan S., Yu R., Guo F., Fang Y., Ji L. Facile synthesis of ultra-fine nanoporous Pt co-catalyst decorated on P25 and its highly efficient photocatalytic activity // Ionics. 2021. V. 27. P. 1633–1643. https://doi.org/10.1007/s11581-021-03958-6
- Lu J. A perspective on new opportunities in atom-by-atom synthesis of heterogeneous catalysts using atomic layer deposition // Catal. Lett. 2021. V. 151. P. 1535–1545. https://doi.org/10.1007/s10562-020-03412-8
- Zhang J., Zheng X., Yu W., Feng X., Qin Y. Unravelling the synergy in platinum-nickel bimetal catalysts designed by atomic layer deposition for efficient hydrolytic dehydrogenation of ammonia borane // Appl. Catal. B: Environ. 2022. V. 306. ID121116. https://doi.org/10.1016/j.apcatb.2022.121116
- Labbe M., Clark M.P., Cadien K., Ivey D.G. Bifunctional Mn‐Fe Oxide Catalysts for Zn‐Air Battery Air Electrodes Fabricated Through Atomic Layer Deposition // Batter. Supercaps. 2024. V. 7. № 9. ID e202400133. https://doi.org/10.1002/batt.202400133
- Srivastava V.C. An evaluation of desulfurization technologies for sulfur removal from liquid fuels // RSC Adv. 2012. V. 2. № 3. P. 759–783. https://doi.org/10.1039/C1RA00309G
- Zhang X., Zhang Z., Zhang B., Yang X., Chang X., Zhou Z., Wang D.H., Zhang M.H., Bu X.H. Synergistic effect of Zr-MOF on phosphomolybdic acid promotes efficient oxidative desulfurization // Appl. Catal. B: Environ. 2019. V. 256. ID117804. https://doi.org/10.1016/j.apcatb.2019.117804
- Akopyan A.V., Kulikov L.A., Polikarpova P.D., Shlenova A.O., Anisimov A.V., Maximov A.L., Karakhanov E.A. Metal-free oxidative desulfurization catalysts based on porous aromatic frameworks // Ind. Eng. Chem. Res. 2021. V. 60. № 25. P. 9049–9058. https://doi.org/10.1021/acs.iecr.1c00886
- Tang W., Yao Y., Huang X. Hydrogen-assisted thermocatalysis over Titanium Nanotube for oxidative desulfurization // Catalysts. 2021. V. 12. № 1. ID29. https://doi.org/10.3390/catal12010029
- Bai J., Song Y., Wang C., Chen H., Wei D., Bai L., Wang W., Yang L., Liang Y., Yang H. Engineering the electronic structure of Mo sites in Mn–Mo–O-mixed-metal oxides for efficient aerobic oxidative desulfurization // Energy Fuels. 2021. V. 35. № 15. P. 12310–12318. https://doi.org/10.1021/acs.energyfuels.1c01476
- Elwan H.A., Zaky M.T., Farag A.S., Soliman F.S., Hassan M.E.D. Efficient pyridinium-based ionic liquid for deep oxidative desulfurization of model oil // J. Mol. Liq. 2020. V. 310. ID113146. https://doi.org/10.1016/j.molliq.2020.113146
- Liu Z., Zhang Y., Bai J., Yang H., Yang L., Bai L., Wei D., Wang W., Liang Y., Chen H. nanoclusters decorated on spinel-type transition metal oxide porous nanosheets for aerobic oxidative desulfurization of fuels // Fuel. 2023. V. 334. Pt. 2. ID126753. https://doi.org/10.1016/j.fuel.2022.126753
- Jiang W., Gao X., Dong L., Xiao J., Zhu L.H., Chen G.Y., Xun S.H., Peng C., Zhu W.S., Li H.M. Aerobic oxidative desulfurization via magnetic mesoporous silica-supported tungsten oxide catalysts // Pet. Sci. 2020. V. 17. P. 1422–1431. https://doi.org/10.1007/s12182-020-00498-y
- Chen L., Yuan Z.Y. Design strategies of supported metal-based catalysts for efficient oxidative desulfurization of fuel // J. Ind. Eng. Chem. 2022. V. 108. P. 1–14. https://doi.org/10.1016/j.jiec.2021.12.025
- García-Gutiérrez J.L., Fuentes G.A., Hernández-Terán M.E., Murrieta F., Navarrete J., Jiménez-Cruz F. Ultra-deep oxidative desulfurization of diesel fuel with catalyzed under mild conditions by polymolybdates supported on Al₂O₃ // Appl. Catal. A: Gen. 2006. V. 305. № 1. P. 15–20. https://doi.org/10.1016/j.apcata.2006.01.027
- Yang F., Wang R., Zhou S., Wang X., Kong Y., Gao S. Mesopore-encaged V–Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfurization // Chin. J. Chem. Eng. 2022. V. 45. P. 182–193. https://doi.org/10.1016/j.cjche.2021.05.015
- Nevanperä T.K., Ojala S., Laitinen T., Pitkäaho S., Saukko S., Keiski R.L. Catalytic oxidation of dimethyl disulfide over bimetallic Cu–Au- and Pt–Au-catalysts supported on , and // Catalysis. 2019. V. 9. № 7. ID603. https://doi.org/10.3390/catal9070603
- Liu S., Zhao F., Sun H., Liu X., Cui B. Iron promotion of V-HMS mesoporous catalysts for ultra-deep oxidative desulfurization // Appl. Organomet. Chem. 2017. V. 32. № 2. ID e4082. https://doi.org/10.1002/aoc.4082
- Aslam S., Subhan F., Yan Z., Yaseen M. Facile fabrication of confined spaces with molybdenum atoms for fast oxidative desulfurization of fuel oil // Sep. Purif. Technol. 2024. V. 344. P. 127301. https://doi.org/10.1016/j.seppur.2024.127301
- Haghighi M., Gooneh-Farahani S. Oxidative desulfurization of dibenzothiophenes over metallic and bimetallic supported ZSM-11 catalysts: xLa/yMo-ZSM-11 as an efficient bimetallic catalyst // Inorg. Chem. Commun. 2019. V. 106. P. 61–69. https://doi.org/10.1016/j.inoche.2019.05.007
- Jamali N., Ramezani N., Mousazadeh M.H. Modified mesoporous HMS supported V/W for oxidative desulfurization of dibenzothiophene // Phys. Chem. Res. 2021. V. 9. № 4. P. 637–649. https://doi.org/10.22036/pcr.2021.276639.1898
- Wan Abu Bakar W.A., Ali R., Kadir A.A.A., Mokhtar W.N.A.W. Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel // Fuel Process. Technol. 2012. V. 101. P. 78–84. https://doi.org/10.1016/j.fuproc.2012.04.004
- Alvarez-Amparán M.A., Cedeno-Caero L. based catalysts for the oxidative desulfurization of refractory compounds: Influence of interaction on the catalytic performance // Catal. Today. 2017. V. 282. Pt. 2. P. 133–139. https://doi.org/10.1016/j.cattod.2016.07.002
- Zhang Q., Zhang J., Yang H., Dong Y., Liu Y., Yang L., Wei D., Wang W., Bai L., Chen H. Efficient aerobic oxidative desulfurization over Co–Mo–O bimetallic oxide catalysts // Catal. Sci. Technol. 2019. V. 9. № 11. P. 2915–2922. https://doi.org/10.1039/C9CY00459A
- Ramos J.M., Wang J.A., Chen L.F., Arellano U., Ramírez S.P., Sotelo R., Schachat P. Synthesis and catalytic evaluation of CoMo/SBA-15 catalysts for oxidative removal of dibenzothiophene from a model diesel // Catal. Commun. 2015. V. 72. P. 57–62. https://doi.org/10.1016/j.catcom.2015.09.007
- Yan X.M., Mei Z., Mei P., Yang Q. Self-assembled HPW/silica–alumina mesoporous nanocomposite as catalysts for oxidative desulfurization of fuel oil // J. Porous Mater. 2014. V. 21. P. 729–737. https://doi.org/10.1007/s10934-014-9819-2
- Chen L., Ren J.T., Yuan Z.Y. Increasing the utilization of SiBeta support to anchor dual active sites of transition metal and heteropolyacids for efficient oxidative desulfurization of fuel // Appl. Catal. B: Environ. 2022. V. 305. ID121044. https://doi.org/10.1016/j.apcatb.2021.121044
- Eseva E., Dunko A., Latypova S., Grafov O., Cherednichenko K., Motyakin M.V., Anisimov A., Akopyan A. Cobalt-manganese spinel structure catalysts for aerobic oxidative desulfurization // Fuel. 2024. V. 357. ID129689. https://doi.org/10.1016/j.fuel.2023.129.689
- Jiabao B., Ya S., Chenxu W., Hou Ch., Donglei W., Liangjiu B., Wenxiang W., Lixia Y., Ying L., Huawei Y. Engineering the electronic structure of Mo sites in Mn–Mo–O mixed-metal oxides for efficient aerobic oxidative desulfurization // Energy Fuels. 2021. V. 35. № 15. Р. 12310–12318. https://doi.org/10.1021/acs.energyfuels.1c01476
- Naseri H., Mazloom G., Akbari A., Banisharif F. Investigation of Ni, Co, and Zn promoters on Mo/HY modified zeolite for developing an efficient bimetallic catalyst for oxidative desulfurization of dibenzothiophene // Microporous Mesoporous Mater. 2021. V. 325. ID111341. https://doi.org/10.1016/j.micromeso.2021.111341
- Mohammadil Z., Najafi Chermahini A., Kasiri Baboukani Z. Oxidative desulfurization of real and model fuel using vanadium-chromium bimetallic catalysts supported on KIT-6 // Res. Chem. Intermed. 2024. V. 50. P. 597–624. https://doi.org/10.1007/s11164-023-05211-3
- Li X., Shi J., Wang J., Xi L., Sun R., Zhang F., Wu X., Zhou Z., Ren Z. Preparation of /BNNS catalyst and its application in oxidation desulfurization of diesel oil // Fuel. 2023. V. 337. ID126875. https://doi.org/10.1016/j.fuel.2022.126875
- Guo H., Lu X., Zhang W., Zhang M., Zhao L., Shou D., Xia Q. Highly efficient oxidation of various thioethers with molecular oxygen catalyzed by bimetallic SnMo-MOF // Mol. Catal. 2024. V. 569. ID114555. https://doi.org/10.1016/j.mcat.2024.114555
- Zhu Z., Ma H., Liao W., Tang P., Yang K., Su T., Ren W., Lü H. Insight into tri-coordinated aluminum dependent catalytic properties of dealuminated Y zeolites in oxidative desulfurization // Appl. Catal. B: Environ. 2021. V. 288. ID120022. https://doi.org/10.1016/j.apcatb.2021.120022
- Li Y., Zhang W., Zhang L., Yang Q., Wei Z., Feng Z., Li C. Direct synthesis of Al–SBA-15 mesoporous materials via hydrolysis-controlled approach // J. Phys. Chem. B. 2004. V. 108. № 28. P. 9739–9744. https://doi.org/10.1021/jp.049824j
- Chandra Mouli K., Soni K., Dalai A., Adjaye J. Effect of pore diameter of Ni–Mo/Al-SBA-15 catalysts on the hydrotreating of heavy gas oil // Appl. Catal. A: Gen. 2011. V. 404. № 1‒2. P. 21–29. https://doi.org/10.1016/j.apcata.2011.07.001
- Gajardo J., Colmenares-Zerpa J., Peixoto A.F., Silva D.S.A., Silva J.A., Gispert-Guirado F., Chimentão R.J. Revealing the effects of high Al loading incorporation in the SBA-15 silica mesoporous material // J. Porous Mater. 2023. V. 30. № 5. P. 1687–1707. https://doi.org/10.1007/s10934-023-01453-z
- Ashirov R., Kimball M.R., O'Brien M., Bhuvanesh N., Blümel J. Aluminum trichloride adducts of phosphine oxides: Structures, Solid-State NMR, and application // Inorg. Chim. Acta. 2024. V. 564. ID121952. https://doi.org/10.1016/j.ica.2024.121952
- Pham X.N., Nguyen M.B., Doan H.V. Direct synthesis of highly ordered Ti-containing Al–SBA-15 mesostructured catalysts from natural halloysite and its photocatalytic activity for oxidative desulfurization of dibenzothiophene // Adv. Powder Technol. 2020. V. 31. № 8. P. 3351–3360. https://doi.org/10.1016/j.apt.2020.06028
- Rivoira L.P., Valles V.A., Martínez M.L., Sa-Ngasaeng Y., Jongpatiwut S., Beltramone A.R. Catalytic oxidation of sulfur compounds over Ce–SBA-15 and Ce–Zr–SBA-15 // Catal. Today. 2021. V. 360. P. 116–128. https://doi.org/10.1016/j.cattod.2019.08.005
- Ramos J.M., Wang J.A., Flores S.O., Chen L.F., Nava N., Navarrete J., Domínguez J.M., Szpunar J.A. Ultrasound-assisted synthesis and catalytic activity of mesostructured /SBA-15 and /Zr–SBA-15 catalysts for the oxidative desulfurization of model diesel // Catal. Today. 2020. V. 349. P. 198–209. https://doi.org/10.1016/j.cattod.2018.04.059
- Ramos J.M., Wang J.A., Flores S.O., Chen L., Arellano U., Noreña L.E., González J., Navarrete J. Ultrasound-assisted hydrothermal synthesis of /Zr–SBA-15 catalysts for production of ultralow sulfur fuel // Catalysts. 2021. V. 11. № 4. ID408. https://doi.org/10.3390/catal11040408
- Rivoira L., Martínez M.L., Anunziata O., Beltramone A. Vanadium oxide supported on mesoporous SBA-15 modified with Al and Ga as a highly active catalyst in the ODS of DBT // Microporous Mesoporous Mater. 2017. V. 254. P. 96–113. https://doi.org/10.1016/j.micromeso.2017.04.019
- Zhang X., Zhu Y., Huang P., Zhu M. Phosphotungstic acid on zirconia-modified silica as catalyst for oxidative desulfurization // RSC Adv. 2016. V. 6. № 73. P. 69357–69364. https://doi.org/10.1039/C6RA16622A
- Yuzbashi S., Mousazadeh M.H., Ramezani N., Sid Kalal H., Sabour B. Mesoporous zirconium–silica nanocomposite modified with heteropoly tungstophosphoric acid catalyst for ultra-deep oxidative desulfurization // Appl. Organomet. Chem. 2020. V. 34. № 2. ID e5326. https://doi.org/10.1002/aoc.5326
- Naseri H., Mazloom G., Akbari A., Banisharif F. Investigation of Ni, Co, and Zn promoters on Mo/HY modified zeolite for developing an efficient bimetallic catalyst for oxidative desulfurization of dibenzothiophene // Microporous Mesoporous Mater. 2021. V. 325. ID111341. https://doi.org/10.1016/j.micromeso.2021.111341
- Гуль О.О., Поликарпова П.Д., Акопян А.В., Анисимов А.В. Биметаллические гетерогенные катализаторы для окисления серосодержащих соединений пероксидом водорода // Кинетика и катализ. 2023. T. 64. № 5. С. 609–617. https://doi.org/10.31857/S0453881123050039 [Gul O.O., Polikarpova P.D., Akopyan A.V., Anisimov A.V. Bimetallic heterogeneous catalysts for the oxidation of sulfur-containing compounds with hydrogen peroxide // Kinet. Catal. 2023. V. 64. № 5. P. 627–634. https://doi.org/10.1134/S0023158423050038]
- Гуль О.О., Домашкина П.Д., Акопян А.В., Сенявин В.М., Анисимов А.В. Катализаторы на основе оксида вольфрама и Al–SBA-15 для окисления сернистых соединений нефтяного происхождения / Нефтехимия. 2024. Т. 64. № 2. С. 163–174. https://doi.org/10.31857/S0028242124020055
- Akopyan A., Polikarpova P., Gul O., Anisimov A., Karakhanov E. Catalysts based on acidic SBA-15 for deep oxidative desulfurization of model fuels // Energy Fuels. 2020. V. 34. № 11. P. 14611–14619. https://doi.org/10.1021/acs.energyfuels.0c02008
- Lima T.M., de Macedo V., Silva D.S.A., Castelblanco W.N., Pereira C.A., Roncolatto R.E., Gawande M.B., Zbořil R., Varma R.S., Urquieta-González E.A., Urquieta-González E.A. Molybdenum-promoted cobalt supported on SBA-15: Steam and sulfur dioxide stable catalyst for CO oxidation // Appl. Catal. B: Environ. 2020. V. 277. ID119248. https://doi.org/10.1016/j.apcatb.2020.119248
- Todorova S., Kolev H., Karakirova Y., Filkova D., Grahovski B., Aleksieva K., Holgado J.P., Kadinov G., Caballero A. Preferential CO oxidation in hydrogen-rich gases over Ag catalysts supported on different supports // Reac. Kinet. Mech. Catal. 2022. V. 135. № 3. P. 1405–1422. https://doi.org/10.1007/s11144-022-02158-1
- Okutan C., Arbag H., Yasyerli N., Yasyerli S. Catalytic activity of SBA-15 supported Ni catalyst in CH4 dry reforming: effect of Al, Zr, and Ti co-impregnation and Al incorporation to SBA-15 // Int. J. Hydrog. Energy. 2020. V. 45. № 27. P. 13911–13928. https://doi.org/10.1016/j.ijhydene.2020.03.052
- Wan Z., Xu X., Li C., Zhang J., Wang Q., Fang L., Zhang L., Guo Q., Sun D. Simultaneous oxidation and absorption of nitric oxide and sulfur dioxide by peroxomonosulfate activated by bimetallic metal-organic frameworks // J. Environ. Chem. Eng. 2023. V. 11. № 2. ID109417 https://doi.org/10.1016/j.jece.2023.109417
- Алимарданов Х.М., Мусаева Э.С., Гарибов Н.И., Дадашова Н.Р. Окисление пироконденсата и некоторых его непредельных компонентов пероксидом водорода в присутствии полиоксовольфрамата, модифицированного катионами церия // Нефтехимия. 2024. T. 64. № 1. C. 55–63. https://doi.org/10.31857/S0028242124010042
- Khalaf Y.H., Sherhan B.Y., Shakor Z.M., Al-Sheikh F. Биметаллические катализаторы изомеризации алканов (обзор) // Современные молекулярные сита. 2023. Т. 5. № 2. С. 134–149. https://doi.org/10.53392/27130304_2023_5_2_134 [Khalaf Y.H., Sherhan B.Y., Shakor Z.M., Al-Sheikh F. Bimetallic catalysts for isomerization of alkanes (A Review) // Petrol. Chem. 2023. V. 63. № 7. P. 829–843. https://doi.org/10.1134/S0965544123050079]
- Zhou J., Zhao J., Zhang J., Zhang T., Ye M., Liu Z. Regeneration of catalysts deactivated by coke deposition: A review // Chin. J. Catal. 2020. V. 41. № 7. P. 1048–1061. https://doi.org/10.1016/S1872-2067(20)63552-5
- Zhao J., Huffman G.P., Davis B.H. XAFS study of the state of platinum in a sulfated zirconia catalyst // Catal. Lett. 1994. V. 24. P. 385–389.
- Blomsma, E., Martens, I., Jacobs, P.A. Isomerization and hydrocracking of heptane over bimetallic bifunctional PtPd/H-beta and PtPd/USY zeolite catalysts // J. Catal. 1997. V. 165, № 2. P. 241–248. https://doi.org/10.1016/jcat.1997.1473
- Corma A., Navas J., Sabater M.J. Advances in one-pot synthesis through borrowing hydrogen catalysis // Chem. Rev. 2018. V. 118. № 4. P. 1410–1459. https://doi.org/10.1021/acs.chemrev.7b00340
- Tomer A., Yan Z., Ponchel A., Pera-Titus M. Mixed oxides supported low-nickel formulations for the direct amination of aliphatic alcohols with ammonia // J. Catal. 2017. V. 356. P. 133–146. https://doi.org/10.1016/j.jcat.2017.08.015
- Ruiz D., Aho A., Mäki-Arvela P., Kumar N., Oliva H., Murzin D.Y. Direct amination of dodecanol over noble and transition metal supported silica catalysts // Ind. Eng. Chem. Res. 2017. V. 56. № 45. P. 12878–12887. https://doi.org/10.1021/acs.iecr.7b03580
- Tomer A., Kusema B.T., Paul J.F., Przybylski C., Monflier E., Pera-Titus M., Ponchel A. Cyclodextrin-assisted low-metal Ni-Pd/ bimetallic catalysts for the direct amination of aliphatic alcohols // J. Catal. 2018. V. 368. P. 172–189. https://doi.org/10.1016/j.jcat.2018.10.002
- Liu L., Corma A. Bimetallic sites for catalysis: from binuclear metal sites to bimetallic nanoclusters and nanoparticles // Chem. Rev. 2023. V. 123. № 8. P. 4855–4933. https://doi.org/10.1021/acs.chemrev.2c00733
- Ball M.R., Rivera-Dones K.R., Gilcher E.B., Ausman S.F., Hullfish C.W., Lebron E.A., Dumesic J.A. AgPd and CuPd catalysts for selective hydrogenation of acetylene // ACS Catal. 2020. V. 10. № 15. P. 8567–8581. https://doi.org/10.1021/acscatal.0c01536
- Sanchis I., Diaz E., Pizarro A.H., Rodriguez J.J., Mohedano A.F. Nitrate reduction with bimetallic catalysts. A stability-addressed overview // Sep. Purif. Technol. 2022. V. 290. ID120750. https://doi.org/10.1016/j.seppur.2022.120750
- Akti F., Balci S., Dogu T. Role of synthesis media on properties of tin and copper incorporated SBA-15 catalysts and their activity in selective oxidation of ethanol // Mater. Chem. Phys. 2019. V. 223. P. 249–259. https://doi.org/10.1016/j.matchemphys.2018.10.068
- Lee J.S., Han G.B., Kang M. Low-temperature steam reforming of ethanol for carbon monoxide-free hydrogen production over mesoporous Sn-incorporated SBA-15 catalysts // Energy. 2012. V. 44. № 1. P. 248–256. https://doi.org/10.1016/j.energy.2012.06.032
- Яшник С.А., Суровцева Т.А., Ищенко А.В., Каичев В.В., Исмагилов З.Р. Структура и свойства модифицированных платиной Pd–Mn-гексаалюминатных катализаторов высокотемпературного окисления метана // Кинетикa и катализ. 2016. T. 57. № 4. C. 535–547. https://doi.org/10.7868/S0453881116040171
Supplementary files
