Влияние строения карбонильного компонента и состава катализатора на синтез оксиметиленовых эфиров – низкоуглеродных компонентов горюче-смазочных материалов
- Авторы: Черепанова А.Д.1, Дементьев К.И.1, Храпов А.Г.1, Максимов А.Л.1
-
Учреждения:
- Институт нефтехимического синтеза им. А. В. Топчиева РАН
- Выпуск: Том 65, № 4 (2025)
- Страницы: 306-317
- Раздел: Статьи
- URL: https://medjrf.com/0028-2421/article/view/693424
- DOI: https://doi.org/10.31857/S0028242125040049
- ID: 693424
Цитировать
Полный текст



Аннотация
Показана принципиальная возможность получения экологичных компонентов горюче-смазочных материалов – оксиметиленовых эфиров – на базе отечественного сырья с использованием отечественного катализатора. Синтезы проводили путем конденсации формальдегида, высвобождающегося при ацидолизе его полимерных форм, со спиртами. Показано, что путем оптимизации параметров процесса синтеза можно добиться конверсии и выхода целевых продуктов на уровне не менее 60–70% при любом строении карбонильного компонента и составе катализатора. Показано, что снижение размера частиц и степени полимеризации параформальдегида, а также использование сухих типов катионообменных смол в качестве катализатора способствует увеличению не только скорости реакции, но и повышению максимально достижимой конверсии сырья.
Ключевые слова
Об авторах
А. Д. Черепанова
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: cherepanova@ips.ac.ru
г. Москва, 119991 Россия
К. И. Дементьев
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: cherepanova@ips.ac.ru
г. Москва, 119991 Россия
А. Г. Храпов
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: cherepanova@ips.ac.ru
г. Москва, 119991 Россия
А. Л. Максимов
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Автор, ответственный за переписку.
Email: cherepanova@ips.ac.ru
г. Москва, 119991 Россия
Список литературы
- Bhatelia T., Lee W.J., Samanta C., Patel J., Bordoloi A. Processes for the production of oxymethylene ethers: promising synthetic diesel additives // Asia-Pacific J. Chem. Eng. 2017. V. 12. P. 827–837. https://doi.org/10.1002/apj.2119
- Baranowski C.J., Bahmanpour A.M., Kröcher O. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review // Appl. Catal. B: Environ. 2017. V. 217. P. 407–420. https://doi.org/10.1016/j.apcatb.2017.06.007
- Liu J., Wang L., Wang P., Sun P., Liu H., Meng Z., Zhang L. Ma H. An overview of polyoxymethylene dimethyl ethers as alternative fuel for compression ignition engines // Fuel. 2022. V. 318. ID 123582. https://doi.org/10.1016/j.fuel.2022.123582
- Bartholet D.L., Arellano-Treviño M.A., Chan F.L., Lucas S., Zhu J., St. John P.C., Alleman T.L., McEnally C.S., Pfefferle L.D., Ruddy D.A., Windom B., Foust T.D., Reardon K.F. Property predictions demonstrate that structural diversity can improve the performance of polyoxymethylene ethers as potential bio-based diesel fuels // Fuel. 2021. V. 295. ID 120509. https://doi.org/10.1016/j.fuel.2021.120509
- Drexler M., Haltenort P., Zevaco T.A., Arnold U., Sauer J. Synthesis of tailored oxymethylene ether (OME) fuels: Via transacetalization reactions // Sustain. Energy Fuels. 2021. V. 5. P. 4311–4326. https://doi.org/10.1039/D1SE00631B
- Bowker M. Methanol synthesis from CO2 hydrogenation // ChemCatChem. 2019. V. 11. № 17. P. 4238–4246. https://doi.org/10.1002/cctc.201900401
- Sun D., Sato S., Ueda W., Primo A., Garcia H., Corma A. Production of C4 and C5 alcohols from biomass-derived materials // Green Chem. 2016. V. 18. P. 2579–2597. https://doi.org/10.1039/C6GC00377J
- Scully S.M., Orlygsson J. Chapter 5. Biological production of alcohols // Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts. Elsevier Inc., 2019. P. 83–108. https://doi.org/10.1016/B978-0-12-817941-3.00005-X
- Паланкоев Т.А., Кузнецов П.С., Беденко С.П., Дементьев К.И. Низкоуглеродные компоненты моторных топлив на основе оксидов углерода (обзор) // Нефтехимия. 2024. Т. 64. № 3. С. 185–203. https://doi.org/10.31857/S0028242124030012
- [Palankoev T.A., Kuznetsov P.S., Bedenko S.P., Dement’ev K.I. Low-carbon engine fuel components based on carbon oxides (a review) // Perol. Chemisrty. 2024. V. 64. P. 331–345. https://doi.org/10.1134/S096554412402018X]
- Arellano-Treviño M.A., Bartholet D., To A.T., Bartling A.W., Baddour F.G., Alleman T.L., Christensen E.D., Fioroni G.M., Hays C., Luecke J., Zhu J., McEnally C.S., Pfefferle L.D., Reardon K.F., Foust T.D., Ruddy D.A. Synthesis of butyl-exchanged polyoxymethylene ethers as renewable diesel blendstocks with improved fuel properties // ACS Sustain. Chem. Eng. 2021. V. 9. № 18. P. 6266–6273. https://doi.org/10.1021/acssuschemeng.0c09216
- Arellano-Treviño M.A., Alleman T.L., Brim R., To A.T., Zhu J., McEnally C.S., Hays C., Luecke J., Pfefferle L.D., Foust T.D., Ruddy D.A. Blended fuel property analysis of butyl-exchanged polyoxymethylene ethers as renewable diesel blendstocks // Fuel. 2022. V. 322. ID 124220. https://doi.org/10.1016/j.fuel.2022.124220
- Lautenschütz L., Oestreich D., Seidenspinner P., Arnold U., Dinjus E., Sauer J. Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers // Fuel. 2016. V. 173. P. 129–137. https://doi.org/10.1016/j.fuel.2016.01.060
- Lucas S.P., Labbe N.J., Marchese A.J., Windom B. Pre-vaporized ignition behavior of ethyl- and propyl-terminated oxymethylene ethers // Proc. Combust. Inst. 2023. V. 39. № 1. P. 765–774. https://doi.org/10.1016/j.proci.2022.08.065
- Lucas S.P., Chan F.L., Fioroni G.M., Foust T.D., Gilbert A., Luecke J., McEnally C.S., Serdoncillo J.J.A., Zdanowicz A.J., Zhu J., Windom B. Fuel properties of oxymethylene ethers with terminating groups from methyl to butyl // Energy Fuels. 2022. V. 36. № 17. P. 10213–10225. https://doi.org/10.1021/acs.energyfuels.2c01414
- Arellano-Treviño M.A., Baddour F.G., To A.T., Alleman T.L., Hays C., Luecke J., Zhu J., McEnally C.S., Pfefferle L.D., Foust T.D., Ruddy D.A. Diesel fuel properties of renewable polyoxymethylene ethers with structural diversity // Fuel. 2024. V. 358. Pt. B. ID 130353. https://doi.org/10.1016/j.fuel.2023.130353
- Lucas S.P., Zdanowicz A.J., Wolff W.W., Windom B.C. Combustion characteristics of diisopropoxymethane, a low-reactivity oxymethylene ether // Fuel. 2024. V. 362. ID 130727. https://doi.org/10.1016/j.fuel.2023.130727
- Берлин Ал.Ал., Дебердеев Р.Я., Перухин Ю.В., Гарипов Р.М. Полиоксиметилены. М.: Наука, 2008. 286 c.
- Яновская Л.А., Юфит С.С., Кучеров В.Ф. Химия ацеталей. М.: Наука, 1975. 275 с.
- Breitkreuz C.F., Hevert N., Schmitz N., Burger J., Hasse H. Synthesis of methylal and poly(oxymethylene) dimethyl ethers from dimethyl ether and trioxane // Ind. Eng. Chem. Res. 2022. V. 61. № 23. P. 7810–7822. https://doi.org/10.1021/acs.iecr.2c00790
- Klokic S., Hochegger M., Schober S., Mittelbach M. Investigations on an efficient and environmentally benign poly(oxymethylene) dimethyl ether (OME3-5) fuel synthesis // Renew. Energy. 2020. V. 147. Pt. 1. P. 2151–2159. https://doi.org/10.1016/j.renene.2019.10.004
- Grajales E.J., Alarcón E.A., Villa A.L. Kinetics of depolymerization of paraformaldehyde obtained by thermogravimetric analysis // Thermochim. Acta. 2015. V. 609. P. 49–60. https://doi.org/10.1016/j.tca.2015.04.016
- Lüftl S., Visakh P.M., Chandran S. Polyoxymethylene handbook – structure, properties, applications and their nanocomposites. Scrivener Publishing LLC. 2014. 448 p. https://doi.org/10.1002/9781118914458
- Guo J., Chin Y.-H. C. Kinetic and thermodynamic requirements for polyoxymethylene dimethyl ether synthesis catalyzed by ion-exchange resin // ACS Catal. 2024. V. 14. № 16. P. 12564–12580. https://doi.org/10.1021/acscatal.4c01616
Дополнительные файлы
