Cryogenic bipolar low noise dc amplifier for low frequency applications

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A low-noise bipolar differential dc amplifier was studied at temperatures of 300 and 77 K. It was shown that to ensure the best amplifier performance in terms of noise figure when the operating temperature decreases from 300 to 77 K, it is advisable to use the transistor in the mode of low currents not exceeding 2 mA. It has been established that lowering the operating temperature to 77 K leads to a decrease in the input resistance of the amplifier from a value of several kiloohms to 100 Ohms, the dynamic range increases from 80 to 85 dB, and the harmonic coefficient increases from 0.09% to 1%. In addition, lowering the operating temperature to 77 K has a significant effect on the noise properties of the amplifier: the spectral density of voltage noise decreases from 1 to 0.4 nV/Hz1/2, the spectral density of current noise increases from 2.5 to 9 pA/Hz1/2, while also The threshold frequencies of 1/f noise increase: for voltage from (0.1...10) to 20 Hz and for current from (10...100) to 1000 Hz. The possibility of using an amplifier for low-temperature measurements of samples with low input resistance is substantiated.

Texto integral

Acesso é fechado

Sobre autores

I. Novikov

Novosibirsk State Technical University

Email: vostreczov@corp.nstu.ru
Rússia, K. Marx avenue 20, Novosibirsk, 630073

D. Vol’khin

Novosibirsk State Technical University

Email: vostreczov@corp.nstu.ru
Rússia, K. Marx avenue 20, Novosibirsk, 630073

A. Vostretsov

Novosibirsk State Technical University; Federal State Budgetary Institution of Science; Institute of Mining named after. N. A. Chinakala Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: vostreczov@corp.nstu.ru
Rússia, K. Marx avenue 20, Novosibirsk, 630073; Krasny Ave., 54, Novosibirsk, 630091

Bibliografia

  1. Howard R.M. // Proc. 1998 Conf. on Optoelectronic and Microelectronic Materials and Devices, Perth, WA, Australia, P. 179.
  2. Menolfi C., Huang Q. // IEEE J. Solid-State Circuits. 1997. V. 3. № 7. P. 968.
  3. Ciofi C., De Marines M., Neri B. // IEEE Trans. 1997. V. IM-46. № 4. P. 789.
  4. Schurig Th., Drung D., Bechstein S. et al. // Physica C. 2002. V. 378–381. P. 1378. https://doi. org/10.1016/S0921-4534(02)01724-0
  5. Neri B., Pellegrini B., Saletti R. // IEEE Trans. 1991. V. IM-40. № 1. P. 2.
  6. Jones B.K. // Proc. IEE Circuits Devices Syst. 2002. V. 149(1). P. 13. https://doi. org/10.1049/ip-cds:20020331.
  7. Levinzon F.A. // IEEE Trans. 2008. V. CS-I-55. № 7. P. 1815. https://doi. org/10.1109/tcsi.2008.918213
  8. Cannata G., Scandurre G., Ciofi C. // Rev. Sci. Instruments. 2009. V. 80. Article No. 114702. https://doi.org/10.1063/1.3258197
  9. Volkhin D.I., Novikov I.L., Vostretsov A.G. // Proc. 2022 IEEE 23rd Int. Conf. of Young Professionals in Electron Devices and Materials (EDM). Altai. 30 Jun. – 04 Jul. N.Y.: IEEE, 2022. P. 61. https://doi. org/10.1109/EDM55285.2022.9855125
  10. Pospieszalski M.W. // IEEE Microwave Magaz. 2005. V. 6. № 3. P. 62.
  11. Volkhin D.I., Novikov I.L., Vostretsov A.G. // Proc. 2021 XV Int. Scientific-Techn. Conf. on Actual Problems of Electronic Instrument Engineering (APEIE). Novosibitsk. 19–21 Nov. N.Y.: IEEE, 2021. P. 18. https://doi.org/10.1109/APEIE52976.2021.9647438
  12. Novikov I.L., Vostretsov A.G., Volkhin D.I. // Cryogenics. 2022. V. 127. Article No. 103571. https://doi.org/10.1016/j.cryogenics.2022.103571.
  13. Mochtenbacher C.D., Connelly J.A. Low-Noise Electronic System Design. N.Y.: Wiley-Interscience, 1993.
  14. Zhao J., Zhang Y., Y-H. Lee Y-H. et al. // Rev. Sci. Instruments. 2014. V. 85. № 5. Article No. 054707. https://doi.org/10.1063/1.4878342
  15. Oukhanski N., Stolz R., Zakosarenko V. et al. // Physica C: Superconductivity. 2002. V. 368. № 1–4. P. 166. https://doi.org/10.1016/S0921-4534(01)01160-1
  16. Oukhanski N., Stolz R., Meyer H-G. // J. Physics: Conf. Series. 2006. V. 43. P. 310. https://doi.org/10.1088/1742-6596/43/1/310
  17. Drung D. // Rev. Sci. Instruments. 1997. V. 68. P. 4066. https://doi.org/10.1063/1.1148348
  18. Drung D., Hinnrichs C., Barthelmess H.-J. // Supercond. Sci. Technol. 2006. V. 19. № 5. P. S235. https://doi.org/10.1088/0953-2048/19/5/S15

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of a low-noise DC amplifier.

Baixar (107KB)
3. Fig. 2. Gain measurement circuits: a – without a shunt resistor for measuring voltage noise, b – with a shunt resistor for measuring current noise (the power supply of the differential output buffer DIFFOUT is not shown).

Baixar (271KB)
4. Fig. 3. Schemes for measuring voltage (a) and current (b) spectral density of noise.

Baixar (255KB)
5. Fig. 4. Dependences of the amplifier gain on the collector current at 300 K (a) and 77 K (b).

Baixar (134KB)
6. Fig. 5. Spectral densities of voltage (a, b) and current (c, d) noise at minimum (1) and maximum (2) collector currents: a, c – T = 300 K, Iк ₘᵢₙ = 0.25 mA, Iк ₘₐₓ = 1.78 mA; b, d – T = 77 K, Iк ₘᵢₙ = 0.46 mA, Iк ₘₐₓ = 3.1 mA.

Baixar (294KB)
7. Fig. 6. Dependence of the amplifier noise figure on the source resistance at T = 77 K and different collector currents: 0.46 (1), 0.56 (2), 0.72 (3), 0.95 (4), 1.07 (5), 1.49 (6), 1.8 (7), 2.6 (8) and 3.1 mA (9).

Baixar (137KB)
8. Fig. 7. Dependence of the harmonic coefficient (a) and the dynamic range of the amplifier (b) on the collector current at T = 300 (1) and 77 K (2).

Baixar (119KB)
9. Fig. 8. Dependence of the amplifier complex input impedance module on the collector current at T = 300 (1) and 77 K (2).

Baixar (62KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024