CAVITY QED WITH DEGENERATE ATOMIC LEVELS AND POLARIZATION-DEGENERATE FIELD MODE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The Jaynes – Cummings model with degenerate atomic levels and polarization-degenerate field mode is considered. The general expression for the system evolution operator is derived. The analytical expressions for such operators in the case of low values (J ≤3/2) of atomic angular momentum are obtained. The polarization properties of the photon emitted into the cavity by an excited atom are studied with an account of relaxation processes for arbitrary angular momenta of atomic levels.

作者简介

V. Reshetov

Department of General and Theoretical Physics, Tolyatti State University

Email: vareshetov@tltsu.ru
Tolyatti, Russia

参考

  1. E. Jaynes and F. Cummings, Proc. IEEE 51, 89 (1963).
  2. J. Larson, and T. Mavrogordatos, The Jaynes – Cummings Model and Its Descendants, IOP Publishing, Bristol (2021).
  3. M. Scully and M. Zubairy, Quantum Optics, Cambridge University Press, Cambridge (1997).
  4. S. Haroche and J.-M. Raimond, Exploring the Quantum. Atoms, Cavities and Photons, Oxford University Press, Oxford (2006).
  5. P. Meystre, Quantum Optics. Taming the Quantum, Springer, Cham (2021).
  6. J.-M. Raimond, M. Brune, and S. Haroche, Rev.Mod.Phys. 73, 565 (2001).
  7. H. Walther, B. Varcoe, B.-G. Englert, and T. Becker, Rep. Prog. Phys. 69, 1325 (2006).
  8. A. Kuhn, and D. Ljunggren, Contemp.Phys. 51, 289 (2010).
  9. A. Reiserer, and G. Rempe, Rev.Mod.Phys. 87, 1379 (2015).
  10. D. Meshede, H. Walther, and G. Muller, Phys. Rev. Lett. 54, 51 (1985).
  11. B.-G. Englert, M. Löffler, O. Benson, M. Weidinger, B. Varcoe, and H. Walther, Fortschrit. Phys. 46, 897 (1998).
  12. B. Varcoe, S. Brattke, and H. Walther, J.Opt.B:Quantum Semiclassical Opt. 2, 154 (2000).
  13. S. Brattke, B. Varcoe, and H. Walther, Phys. Rev. Lett. 86, 3534 (2001).
  14. M. Jones, G. Wilkes, and B. Varcoe, J. Phys. B 42, 145501 (2009).
  15. M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, Phys. Rev. Lett. 85, 4872 (2000).
  16. A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett. 89, 067901 (2002).
  17. T. Wilk, S. Webster, H. Specht, G. Rempe, and A. Kuhn, Phys. Rev. Lett. 98, 063601 (2007).
  18. T. Wilk, S. Webster, A. Kuhn, and G. Rempe, Science 317, 488 (2007).
  19. H. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S.Ritter, and G. Rempe, Nature 473, 190 (2011).
  20. S. Ritter, C. Noölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke1, E. Figueroa, J. Bochmann, and G. Rempe, Nature, 484, 195 (2012).
  21. T. Barrett, O. Barter, D. Stuart, B. Yuen, and A. Kuhn, Phys. Rev. Lett. 122, 083602 (2019).
  22. G. Chiarella, T. Frank, P. Farrera, and G. Rempe, Optica Quantum 2, 346 (2024).
  23. V. Reshetov and I. Yevseyev, Laser Phys. 10, 916 (2000).
  24. V. Reshetov and I. Yevseyev, Laser Phys. Lett. 1, 124 (2004).
  25. V. Reshetov, E. Popov, and I. Yevseyev, Laser Phys.Lett. 7, 218 (2010).
  26. V. Reshetov, Opt. Commun. 285, 4457 (2012).
  27. V. Reshetov and E. Popov, J. Phys. B 45, 225502 (2012).
  28. V. Reshetov, Laser Phys. Lett. 16, 046001 (2019).
  29. V. Reshetov, Laser Phys. Lett. 17, 026001 (2020).
  30. V. Reshetov, Laser Phys. 30, 086001 (2020).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025