Nickel-containing catalysts based on rice husk for hydrogenation of carbon dioxide to produce methane

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The synthesis of nickel catalyst for hydrogenation of carbon dioxide to methane on a carrier obtained by rice husk pyrolysis is proposed. The original synthetic approach consists in annealing rice husk in the presence of nickel nitrate at 500–700°C, which reduces the labor, time and energy consumption for the synthesis. Comparison of nickel catalysts obtained using different conditions of calcination in different number of stages shows that the proposed method allows to achieve activity (18.8 h1), comparable to literature data. At the same time, Mn promotion significantly improves its performance. This approach may be important for the development of efficient catalysts for CO2 hydrogenation with methane production and further application of rice husk in catalysis.

Авторлар туралы

V. Rodin

Ivanovo State University

Email: viacheslav.rodin@chemistry.msu.ru
Ivanovo, Russia

R. Novotortsev

Lomonosov Moscow State University

Moscow, Russia

N. Magdalinova

Ivanovo State University

Ivanovo, Russia

S. Savilov

Lomonosov Moscow State University; A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

Әдебиет тізімі

  1. MohdRidzuan N.D., Shaharun M.S., Anawar M.A., Ud-Din I. // Catalysts. 2022. V. 12. № 5. P. 469. https://doi.org/10.3390/catal12050469.
  2. Netskina O.V., Dmitruk K.A., Mazina O.I. et al. // Mater. 2023. V. 16. № 7. P. 2616. https://doi.org/10.3390/ma16072616.
  3. Lim J.Y., Safder U., How B.S. et al. // Appl. Energy. 2021. V. 283. P. 116302. https://doi.org/10.1016/j.apenergy.2020.116302.
  4. Šnajdrová V., Hlinčík T., Ciahotný K., Polák L. // Chem. Pap. 2018. V. 72. P. 2339. https://doi.org/10.1007/s11696-018-0456-0.
  5. Aziz M.A.A., Jalil A.A., Triwahyono S. et al. // Appl. Catal. B. 2014. V. 147. P. 359. https://doi.org/10.1016/j.apcatb.2013.09.015.
  6. Rahmani S., Rezaei M., Meshkani F. // J. Ind. Eng. Chem. 2014. V. 20. № 6. P. 4176. https://doi.org/10.1016/j.jiec.2014.01.017.
  7. Singh B. Rice husk ash. In Woodhead Publishing Series in Civil and Structural Engineering, Waste and Supplementary Cementitious Materials in Concrete / Eds. R. Siddique, P. Cachim. Woodhead Publishing. 2018. P. 417. https://doi.org/10.1016/B978-0-08-102156-9.00013-4.
  8. Mazilan M.S.R., Sulaiman S.Z., Semawi N.H. et al. // Mater. Today: Proc. 2023. https://doi.org/10.1016/j.matpr.2023.08.143.
  9. Chernyak S., Rodin V., Novotortsev R.et al. // Catal. Today. 2023. V. 424. P. 113846. https://doi.org/10.1016/j.cattod.2022.07.014.
  10. Paviotti M.A., Salazar Hoyos L.A., Busilacchio V. et al. // J. CO2 Util. 2020. V. 42. P. 101328. https://doi.org/10.1016/j.jcou.2020.101328.
  11. Thommes M. et al. // Pure and applied chemistry. 2015. V. 87. № 9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
  12. Lv C., Xu L., Chen M. et al. // Front. Chem. 2020. V. 8. P. 269. https://doi.org/10.3389/fchem.2020.00269.
  13. Ye R.-P., Gong W., Sun Z. et al. // Energy. 2019. V. 188. P. 116059. https://doi.org/10.1016/j.energy.2019.116059.
  14. Zhu P., Chen Q., Yoneyama Y., Tsubaki N. // RSC Adv. 2014. № 4. P. 64617. https://doi.org/10.1039/C4RA12861C.
  15. Zhao Z.W., Zhou X., Liu Y.-N. et al. // Catal. Sci. Technol. 2018. Т. 8. № 12. P. 3160. https://doi.org/10.1039/C8CY00468D.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025