Fluorination Reaction Control by Surface Migration of Atomic Fluorine

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Fluorination with atomic fluorine seems to be a promising way to functionalize materials, since such processes occur in a wide temperature range with an activation barrier close to zero. Here we demonstrate the ability to control the fluorination of platinum with atomic fluorine using surface migration (diffusion) of adsorbed fluorine atoms (Fads). A change in the concentration of fluorine atoms in the reaction zone is achieved by a change in the direction and magnitude of the diffusion flux of Fads due to the formation of alternative reaction zones. The occurrence of diffusion fluxes is determined by the area of contact of surfaces with the main and alternative reaction zones, which provide conductivity for Fads. The developed approach made it possible to experimentally establish the achievement of equilibrium in the reaction PtF4(g) + 2F(g) = PtF6(g) and measure the equilibrium constant.

Sobre autores

N. Chilingarov

Department of Chemistry, Lomonosov Moscow State University

Email: andrey.borschevsky@gmail.com
Moscow, Russia

A. Knot’ko

Department of Material Sciences, Lomonosov Moscow State University

Email: andrey.borschevsky@gmail.com
Moscow, Russia

A. Borschevsky

Department of Chemistry, Lomonosov Moscow State University

Email: andrey.borschevsky@gmail.com
Moscow, Russia

L. Sidorov

Department of Chemistry, Lomonosov Moscow State University

Autor responsável pela correspondência
Email: andrey.borschevsky@gmail.com
Moscow, Russia

Bibliografia

  1. Weinstock B., Malm J.G., Weaver E.E. // J. Amer. Chem. Soc. 1961. P. 4310.
  2. Jones W.E., Scolnik E.G. // Chem. Rev. 1976. P. 563.
  3. Безмельницин В.Н., Легасов В.А., Чайванов B.B. // Докл. акад. наук СССР. 1977. Т. 235. С. 96.
  4. Feng W., Long P., Feng Y. et al. // Adv. Sci. 2016. V. 3. P. 1500413.
  5. Alimi Ar.R., Gerber R.B., Apkarian V.A. // J. Chem. Phys. 1990. V. 92. P. 3551.
  6. Feld J., Kunttu H., Apkarian V.A. // Ibid. 1990. V. 93. P. 1009.
  7. Misochko E.Ya., Akimov A.V., Wight C.A. // Chem. Phys. Lett. 1997. V. 274. P. 23.
  8. Misochko E.Ya., Akimov A.V., Wight C.A. // J. Phys. Chem. A. 1999. V. 103. P. 7972.
  9. Chilingarov N.S., Knot’ko A.V., Shlyapnikov I.M. et al. // Ibid. 2015. V. 119. P. 8452.
  10. Chilingarov N.S., Borschevsky A.Ya., Romanovsky B.V. et al. // J. Phys. Chem. C. 2018. V. 122. P. 26372.
  11. Chilingarov N.S., Rau J.V., Sidorov L.N. et al. // J. Fluorine Chem. A. 2000. V. 104. P. 291.
  12. Чилингаров Н.С., Рау Д.В., Никитин А.В. и др. // Журн. физ. химии. 1997. Т. 71. С. 1455.
  13. Tressaud A., Pintchovski F., Lozano L. et al. // Mat. Res. Bull. 1976. V. 11. P. 689.
  14. Чилингаров Н.С., Скокан Е.В., Рау Д.В. и др. // Журн. физ. химии. 1992. Т. 66. С. 1127.
  15. Drowart J., Chattilon C., Hastie J. et al. // Pure Appl. Chem. 2005. V. 77. P. 683.
  16. Гурвич Л.В. // Вестн. АН СССР. 1983. № 3. С. 54.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (23KB)
3.

Baixar (36KB)
4.

Baixar (1MB)
5.

Baixar (29KB)

Declaração de direitos autorais © Н.С. Чилингаров, А.В. Кнотько, А.Я. Борщевский, Л.Н. Сидоров, 2023