Studying electromagnetic radiation shielding and absorbing properties of shungite-containing substances

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Fine-dispersed shungite as an effective filler of composite materials is studied. Experimental data on the influence of the filler concentration of the composite material on its electromagnetic radiation absorbing and shielding characteristics in the radio and microwave ranges are obtained. The obtained data can be used for manufacturing effective radio-absorbing materials and electromagnetic shields for protection against undesired effects of electromagnetic radiation, information protection, in radio engineering, as well as in warfare.

Texto integral

Acesso é fechado

Sobre autores

Yu. Samukhina

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: juliesam2008@mail.ru
Rússia, Moscow, 119071

A. Buryak

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: juliesam2008@mail.ru
Rússia, Moscow, 119071

Bibliografia

  1. Кукина О.Б. // Научный вестник Воронежского ГАСУ. Сер.: Физико-химические проблемы и высокие технологии строительного материаловедения. 2014. Вып. 2. № 9. С. 53.
  2. Золотухин С.Н. // Научный вестник Воронежского ГАСУ. Сер.: Высокие технологии. Экология. 2016. № 1. С. 115.
  3. Golubev Y.A., Antonets I.V., Shcheglov V.I. // Materials Chemistry and Physics. 2019. V. 226. Р. 195.
  4. Antonets I.V., Golubev Y.A., Shcheglov V.I., Sun S. // Current Applied Physics. 2021. V. 29. P. 97.
  5. Emelyanov S., Kuzmenko A., Rodionov V., Dobromyslov M. // J. of Nanoand Electronic Physics. 2013. V. 5. № 4. P. 40233.
  6. Galautdinov A., Mukhametrakhimov R., Kupriyanov V. // Lecture Notes in Civil Engineering. 2021. Р. 372.
  7. Abdimuratov Zh.S., Manbetova Zh.D., Imankul M.N. et al. // Series of Geology and Technical Sciences. 2021. V. 445. № 1. P. 6.
  8. Samukhina Yu.V., Nikoladze G.M., Kulkova T.A., Buryak A.K. // Russian J.of Physical Chemistry A. V. 97. № 2. P. 373.
  9. Антонец И.В., Голубев Е.А., Шавров В.Г., Щеглов В.И. // Журн. радиоэлектроники. 2017. № 9. С. 7.
  10. Wells D., Egan J.A., Murphy D.G., Paret T. // Special Paper of the Geological Society of America. 2014. № 509. P. 199.
  11. Fujita T., Aoki T., Ponou J. et al. // Minerals. 2021. V. 11. № 3. P. 245.
  12. Chung D.D.L. // Carbon. 2001. V. 39. P. 279.
  13. Buz’ko V., Shamray I., Goryachko A. et al. // E3S Web of Conferences. 2021. V. 263. P. 01013.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Measuring setup based on the “NanoVNA V2” vector analyzer connected to a personal computer and a coaxial matched loaded waveguide.

Baixar (285KB)
3. Fig. 2. Block diagram of the measuring setup.

Baixar (179KB)
4. Fig. 3. Dependences of the reflection (a), transmission (b), absorption (c) and effective absorption (d) coefficients on the EMI frequency for various composite samples: pure paraffin (1); shungite 10 (2), 30 (3) and 50% (4).

Baixar (479KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025