Dehydration of glycerol on mordenite: a density functional theory study

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Calculations of the glycerol dehydration process on protonated mordenite have been carried out withing the framework of the density functional theory method on the B3LYP/6–311G level, taking into account non-covalent interactions. Both reactions considered, dehydration to acrolein and to acetol, are endothermic (27.3 and 11.7 kcal/mol, respectively). It has been shown that, unlike ZSM-5, the acetol formation pathway is more preferable for mordenite.

作者简介

M. Shelyapina

St. Petersburg State University

St. Petersburg, 199034, Russia

I. Zvereva

St. Petersburg State University

Email: irina.zvereva@spbu.ru
St. Petersburg, 199034, Russia

参考

  1. Aprialdi F., Mujahidin D., Kadja G.T.M. // Waste Biomass Valorization. 2024. V. 15. P. 5069. https://doi.org/10.1007/s12649-024-02487-3.
  2. Barbosa F.F., Braga T.P. // ChemCatChem. 2023. V. 15. P. e202200950. https://doi.org/10.1002/cctc.202200950.
  3. Basu S., Sen A.K. // ChemBioEng Rev. 2021. V. 8. № 6. P. 633. https://doi.org/10.1002/cben.202100009.
  4. Li H., Xin C., Jiao X. et al. // J. Mol. Catal. A Chem. 2015. V. 402. P. 71. https://doi.org/10.1016/j.molcata.2015.03.012
  5. Nomanbhay S., Ong M.Y., Chew K.W. et al. // Energies. 2020. V. 13, № 6. P. 1483. https://doi.org/10.3390/en13061483.
  6. Aomchad V., Cristòfol À., Della Monica F., et al. // Green Chem. Royal Society of Chemistry. 2021. V. 23, № 3. P. 1077. https://doi.org/10.1039/d0gc03824e.
  7. Mazarío J., Concepción P., Ventura M. et al. // J. Catal. 2020. V. 385. P. 160. https://doi.org/10.1016/j.jcat.2020.03.010.
  8. Morales B.C.M., Quesada B.A.O. // Catal. Today. 2021. V. 372. P. 115. https://doi.org/10.1016/j.cattod.2020.11.025.
  9. Katryniok B., Paul S., Bellière-Baca V. et al. // Green Chem. 2010. V. 12, № 12. P. 2079. https://doi.org/10.1039/c0gc00307g.
  10. Lago C.D., Decolatti H.P., Tonutti L.G. et al. // J. Catal. 2018. V. 366. P. 16. https://doi.org/10.1016/j.jcat.2018.07.036.
  11. Zhang H., Hu Z., Huang L. et al. // ACS Catal. 2015. V. 5. № 4. P. 2548. https://doi.org/10.1021/cs5019953.
  12. Possato L.G., Diniz R.N., Garetto T. et al. // J. Catal. 2013. V. 300. P. 102. https://doi.org/10.1016/j.jcat.2013.01.003.
  13. Corma A., Huber G.W., Sauvanaud L. et al. // Ibid. 2008. V. 257. № 1. P. 163. https://doi.org/10.1016/j.jcat.2008.04.016.
  14. Wang Z., Wang L., Jiang Y. et al. // ACS Catal. 2014. V. 4. № 4. P. 1144. https://doi.org/10.1021/cs401225k.
  15. Kongpatpanich K., Nanok T., Boekfa B. et al. // Phys. Chem. Chem. Phys. 2011. V. 13. № 14. P. 6462. https://doi.org/10.1039/c0cp01720e.
  16. Kim Y.T., Jung K.D., Park E.D. // Appl. Catal. A Gen. 2011. V. 393. № 1–2. P. 275. https://doi.org/10.1016/j.apcata.2010.12.007.
  17. Ma T., Yin M., Su C. et al. // J. Ind. Eng. Chem. 2023. V. 117. P. 85. https://doi.org/10.1016/j.jiec.2022.10.043.
  18. Baerlocher C., McCusker L.B. Database of zeolite structures. http://www.iza-structure.org/databases
  19. Шеляпина М.Г., Максимова Е.П., Егоров А.В. // ЖСХ. 2024. Т. 65. № 3. С. 124080. https://doi.org/10.26902/JSC_id124080 (Shelyapina M.G., Maksimova E.P., Egorov A.V. // J. Struct. Chem. 2024. V. 65. № 3. P. 574. https://doi.org/10.1134/S0022476624030120)
  20. Frisch M.J., Trucks G.W.,. Schlegel H.B. et al. Gaussian 16, Revision A.03. Gaussian, Inc., Wallingford CT, 2016.
  21. Brandenburg J.G., Grimme S. // Top. Curr. Chem. 2014. V. 345. P. 1. https://doi.org/10.1007/128_2013_488.
  22. Krishnan R., Binkley J.S., Seeger R., Pople J.A. // J. Chem. Phys. 1980. V. 72. № 1. P. 650. https://doi.org/10.1063/1.438955.
  23. McLean A.D., Chandler G.S. // J. Chem. Phys. 1980. V. 72. № 10. P. 5639. https://doi.org/10.1063/1.438980.
  24. Yoda E., Ootawa A. // Appl. Catal. A Gen. 2009. V. 360. № 1. P. 66. https://doi.org/10.1016/j.apcata.2009.03.009.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025