Method for Synthesis of 4-(4-Hydroxyphenyl)cycloalkanedicarboxylic Acids Based on SEAr Alkylation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A study was carried out on the alkylation reaction of anisole with cycloalkenedicarboxylic acids in the presence of various catalytic systems. It was found that the reaction proceeds with high yields in the presence of aluminum chloride, ferric chloride, and p-toluenesulfonic acid. The possibility of further cleavage of the ether bond to obtain 4-(4-hydroxyphenyl)cycloalkanedicarboxylic acids was demonstrated. The resulting compounds are potential biologically active compounds.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Firstova

Yaroslavl State Technical University

Email: firstova.a.a@mail.ru
ORCID iD: 0000-0002-8423-0430
Ресей, Yaroslavl, 150023

E. Kofanov

Yaroslavl State Technical University

Email: firstova.a.a@mail.ru
ORCID iD: 0000-0001-6598-1303
Ресей, Yaroslavl, 150023

M. Biryukova

Yaroslavl State Technical University

Email: firstova.a.a@mail.ru
Ресей, Yaroslavl, 150023

A. Lebedev

Demidov Yaroslavl State University

Хат алмасуға жауапты Автор.
Email: firstova.a.a@mail.ru
ORCID iD: 0000-0002-0856-3209
Ресей, Yaroslavl, 150003

Әдебиет тізімі

  1. Gilani S.L., Najafpour G.D., Heydarzadeh H.D., Moghadamnia A. // Chirality. 2017. Vol. 29. P. 304. doi: 10.1002/chir.22689
  2. Yuan X., Zhang P., Liu G. // Chem. Pap. 2019. Vol. 73. P. 2461. doi: 10.1007/s11696-019-00796-9
  3. Kanada R., Kagoshima Y., Suzuki T., Nakamura A., Funami H., Watanabe J., Asano M., Takahashi M., Ubukata O., Suzuki K., Aikawa T., Sato K., Goto M., Setsu G., Ito K., Kihara K., Kuroha M., Kohno T., Ogiwara H., Isoyama T., Tominaga Y., Higuchi S., Naito H. // J. Med. Chem. 2023. Vol. 66. N 1. P. 695. doi: 10.1021/acs.jmedchem.2c01641
  4. Heemers H.V., Debes J.D., Tindall D.J. // Adv. Exp. Med. Biol. 2008. Vol. 617. P. 535. doi: 10.1007/978-0-387-69080-3_54
  5. Sobulo O.M., Borrow J., Tomek R., Reshmi S., Harden A., Schlegelberger B., Housman D., Doggett N.A., Rowley J.D., Zeleznik-Le N.J. // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94. P. 8732. doi: 10.1073/pnas.94.16.8732
  6. Gao Y., Geng J., Hong X., Qi J., Teng Y., Yang Y., Qu D., Chen G. // Int. J. Clin. Exp. Pathol. 2014. Vol. 7. P. 760.
  7. Li M., Luo R.Z., Chen J.W., Cao Y., Lu J.B., He J.H., Wu Q.L., Cai M.Y. // J. Transl. Med. 2011. Vol. 9 N 5. P. 2. doi: 10.1186/1479-5876-9-5
  8. Kanada R., Kagoshima Y., Asano M., Suzuki T., Murata T., Haruta M., Takahashi M., Ubukata O., Hashimoto K., Obata K., Kihara K., Kuroha M., Banjo T., Togashi N., Sato K., YamamotoY., Suzuki K., Isoyama T., Tominaga Y., Higuchi S., Naito H. // Bioorg. Med. Chem. Lett. 2022.Vol. 66. P. 128726. doi: 10.1016/j.bmcl.2022.128726
  9. Park S., Radmer R.J., Klein T.E., Pande V.S. // J. Comput.Chem. 2005. Vol. 26. P. 1612. doi: 10.1002/jcc.20301
  10. DeRider M.L., Wilkens S.J., Waddell M.J., Bretscher L.E., Weinhold F., Raines R.T., Markley J.L. // J. Am. Chem. Soc. 2002. Vol. 124. P. 2497. doi: 10.1021/ja0166904
  11. Pandey A.K., Naduthambi D., Thomas K.M., Zondlo N.J. // J. Am. Chem. Soc. 2013. Vol. 135. P. 4333. doi: 10.1021/ja3109664
  12. Khanal P. // Monatsh Chem. 2021. Vol. 152. N 4. P. 387. doi: 10.1007/s00706-021-02759-x
  13. Eastman R.T., Fidock D.A. // Nat. Rev. Microbiol. 2009. Vol. 7 N 12. P. 864. doi: 10.1038/nrmicro2239
  14. Tu Y. // Nat. Med. 2011.Vol. 17. P. 1217. doi: 10.1038/nm.2471
  15. Zhang X.-G., Li G.-X., Zhao S.-S., Xu F.-L., Wang Y.-H., Wang W. // Parasitol. Res. 2014. Vol. 113. P. 1769. doi: 10.1007/s00436-014-3822-z
  16. Saeed M.E.M., Krishna S., Greten H.J., Kremsner P.G., Efferth T. // Pharmacol. Res. 2016. Vol. 110. P. 216. doi: 10.1016/j.phrs.2016.02.017
  17. Caffrey C.R., El-Sakkary N., Mader P., Krieg R., Becker K., Schlitzer M., Drewry D.H., Vennerstrom J.L., Grevelding C.G. In: Neglected Tropical Diseases: Drug Discovery and Development / Eds D. Swinney, M. Pollastri. Wiley‐VCH Verlag GmbH & Co. KGaA, 2019. P. 187. doi: 10.1002/9783527808656.ch8
  18. Shinde A.B., Shrigadi N.B., Samant S.D. // Appl. Catal. (A). 2004. Vol. 276. P. 5. doi: 10.1016/S0926-860X(03)00612-4
  19. Carltion A.A. // J. Org. Chem. 1948. Vol. 13. P. 120. doi: 10.1021/jo01159a016
  20. Sumbramanian S., Mitra A., Satyanarayana C.V.V. // Appl. Catal. (A). 1997. Vol. 159. P. 229. doi: 10.1016/S0926-860X(97)00030-6
  21. Krishnan A.V., Ojha K., Pradhan N.C. // Org. Proc. Res. Dev. 2002. Vol. 6. P. 132. doi: 10.1021/op010077n
  22. Pandian E., Selvanarayanan R., Sreedevi U. // Chem. Eng. J. Adv. 2020. Vol. 4. P. 100045. doi: 10.1016/j.ceja.2020.100045
  23. Bhatt N., Sharma P., Patel A. // Catal. Commun.2008. Vol. 9. P. 1545. doi: 10.1016/j.catcom.2007.12.027
  24. Adam F., Mohammed Hello K., Hussein Ali T. // Appl. Catal. (A). 2011. Vol. 399. P. 42. doi: 10.1016/j.apcata.2011.03.039
  25. Liao X., Wang S.G., Xiang X. // Fuel Proc. Technol.2012. Vol. 96. P. 74. doi: 10.1039/c3ra45921g
  26. Fraga-Dubreuil J., Bourahla K., Rahmouni M. // Catal. Commun. 2002. Vol. 3. P. 185. doi: 10.1016/S1566-7367(02)00087-0
  27. Kondamudi K., Elavarasan P., Upadhyayula S. // J. Mol. Catal. (A). 2010. Vol. 321. P. 34. doi: 10.1016/j.molcata.2010.01.016
  28. Vafaeezadeh M., Hashemi M.M. // Chem. Eng. J. 2014. Vol. 250. P. 35. doi: 10.1016/j.cej.2014.04.001
  29. Valkenberg M.H., Castro C., Holderich W.F. // Green Chem. 2002. Vol. 4. P. 88. doi: 10.1039/B107946H
  30. De Klerk A., Nel R.J.J. // Ind. Eng. Chem. Res. 2007. Vol. 46. N 22. P. 7066. doi: 10.1021/ie0706459
  31. Yang X., Chatterjee S., Zhang Z., Zhu X., Pittman C.U. // Ind. Eng. Chem. Res. 2010. Vol. 49. N 5. P. 2003. doi: 10.1021/ie900998d
  32. Zhao Z., Shi H., Wan C., Hu M.Y., Liu Y., Mei D., Camaioni D.M., Hu J.Z., Lercher J.A. // J. Am. Chem. Soc. 2017. Vol. 139. N 27. P. 9178. doi: 10.1021/jacs.7b02153
  33. Wu S., Dong J., Zhou D., Wang W., Liu L., Zhou Y. // J. Org. Chem. 2020. Vol. 85. N 22. P. 14307. doi: 10.1021/acs.joc.9b03028
  34. Schefczik E. // Chem. Ber. 1965. Vol. 98. P. 1270.
  35. Колобов А.В., Борисов П.В., Панфилов С.Т., Овчинников К.Л., Данилова А.С., Кофанов Е.Р. // Изв. вузов. Сер. хим. и хим. технол. 2007. Т. 50. № 4. C. 59.
  36. Фирстова А.А., Кофанов Е.Р. // ЖОрХ. 2023. Т. 59. № 5. С. 648. doi: 10.31857/S0514749223050129; Firstova A.A., Kofanov E.R. // Russ. J. Org. Chem. 2023. Vol. 59. P. 820. doi: 10.1134/S1070428023050123
  37. Reddy V.P., Prakash G.K.S. In: Kirk–Othmer Encyclopedia of Chemical Technology. Wiley, 2013. doi: 10.1002/0471238961.0618090515120108.a01.pub2
  38. Reddy Ch.G., Krishna P.R. // J. Org. Chem. 2003. Vol. 68. N 11. P. 4574. doi: 10.1021/jo026897v
  39. Gavande N.S., Kundu S., Badgujar N.S., Kaur G., Chakraborti A.K. // Tetrahedron. 2006. Vol. 62. N 17. P. 4201. doi: 10.1002/chin.200631044
  40. Kim J.D., Han G., Zee O.P., Jung Y.H. // Tetrahedron Lett. 2003. Vol. 44. N 4. P. 733. doi: 10.1016/s0040-4039(02)02648-5
  41. Lin A.I., Madzhidov T.I., Klimchuk O., Nugmanov R.I., Antipin I.S., Varnek A. // J. Chem. Inf. Model. 2016. Vol. 56. N 11. P. 2140. doi: 10.1021/acs.jcim.6b00319

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Scheme 1.

Жүктеу (83KB)

© Russian Academy of Sciences, 2024