Synthesis of phosphinic structural analogue of Met-Glu-His-Phe

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The synthesis of a phosphinic structural analogue of the tetrapeptide Met-Glu-γ-His-Phe by adding the dipeptide component His-Phe to the adamantyl ester of the phosphinic pseudo-Met-[P]-Glu-peptide in the form of cyclic glutamate anhydride is proposed. The conditions for the interaction of phosphinic pseudo-Met-[P]-Glu-anhydride with His-Phe in free form to form phosphinic Met-[P]-Glu-γ-His-Phe tetrapeptide have been found. A chromatographic mass-spectrometry study, including MS2, and NMR of the phosphinic tetrapeptide on 1H, 13C, 31P nuclei was carried out using the methods of two-dimensional 1H–1H COSY, 1H–13C HSQC and 1H–13C HMBC NMR spectroscopy.

全文:

受限制的访问

作者简介

V. Shevchenko

National Research Centre “Kurchatov Institute”

编辑信件的主要联系方式.
Email: rvalery@dio.ru
俄罗斯联邦, Moscow

А. Borodachev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: rvalery@dio.ru

Institute of Physiologically Active Compounds

俄罗斯联邦, Chernogolovka, Moscow

М. Dmitriev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: rvalery@dio.ru

Institute of Physiologically Active Compounds

俄罗斯联邦, Chernogolovka, Moscow

К. Shevchenko

National Research Centre “Kurchatov Institute”

Email: rvalery@dio.ru
俄罗斯联邦, Moscow

I. Kalashnikova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: rvalery@dio.ru

Institute of Physiologically Active Compounds

俄罗斯联邦, Chernogolovka, Moscow

А. Ivanov

University “Synergy”

Email: rvalery@dio.ru
俄罗斯联邦, Moscow

I. Nagaev

National Research Centre “Kurchatov Institute”

Email: rvalery@dio.ru
俄罗斯联邦, Moscow

V. Ragulin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: rvalery@dio.ru

Institute of Physiologically Active Compounds

俄罗斯联邦, Chernogolovka, Moscow

N. Myasoedov

National Research Centre “Kurchatov Institute”

Email: rvalery@dio.ru
俄罗斯联邦, Moscow

参考

  1. Пономарева-Степная М.А., Бахарев В.Д., Незавибатько В.Н., Андреева Л.А., Алфеева Л.Ю., Потаман В.Н. // Хим.-фарм. ж. 1986. Т. 20. № 6. С. 667.
  2. Пономарева-Степная М.А., Незавибатько В.Н., Антонова Л.В., Андреева Л.А., Алфеева Л.Ю., Потаман В.Н., Каменский А.А., Ашмарин И.П. // Хим.-фарм.ж. 1984. Т. 18. № 7. С. 790.
  3. Ашмарин И.П., Незавибатько В.Н., Мясоедов Н.Ф., Каменский А.А., Гривенников И.А., Пономарева-Степная М.A., Андреева Л.А., Каплан А.Я., Кошелев В.Б., Рясина Т.В. // Журнал высшей нервной деятельности им. И.П. Павлова. 1997. Т. 47. № 2. С. 420.
  4. Amino Y., Nakazawa M., Kaneko M., Miyaki T., Miyamura N., Maruyama Y., Eto Y. // Chem. Pharm. Bull. 2016. Vol. 64. N 8. P. 1181. doi: 10.1248/cpb.c16-00293
  5. Государственный реестр лекарственных средств. М.: Медицинский совет, 2009. Т. 2. Ч. 1, 2.
  6. Collinsova M., Jiracek J. // Curr. Med. Chem. 2000. Vol. 7. N 6. P. 629. doi: 10.2174/0929867003374831
  7. Mucha A. // Molecules. 2012. Vol. 17. N 11. P. 13530. doi: 10.3390/molecules171113530
  8. Georgiadis D., Dive V. // Top. Curr. Chem. 2015.Vol. 360. P. 1. doi: 10.1007/128_2014_571
  9. Zinc Metalloproteases in Health and Disease / Ed. N.M. Hooper. London: Taylor and Francis, 1996. P. 153.
  10. Hori M., Nishida K. // Cardiovasc. Res. 2009. Vol. 81. N 3. P. 457. doi: 10.1093/cvr/cvn3359
  11. Whittaker M., Ayscough A. // Celltransmissions. 2001.Vol. 17. N 1. P. 3.
  12. Pirad B., Matter H. // J. Med. Chem. 2006. Vol. 49.N 1. P. 51. doi: 10.1021/jm050363f
  13. Vinyukov A.V., Dmitriev M.E., Andreeva L.A., Ustyugov A.A., Shevchenko V.P., Sidoruk K.N., Lednev B.V., Freyman V.M., Dobrovolskiy Y.A., Ragulin V.V., Myasoedov N.F. // Biochem. Biophys. Res. Commun. 2021. Vol. 539. P. 15. doi: 10.1016/j.bbrc.2020.12.087
  14. Дмитриев М.Э., Шевченко К.В., Шевченко В.П., Нагаев И.Ю., Калашникова И.П., Рагулин В.В., Мясоедов Н.Ф. // ЖОХ. 2023. Т. 93. № 8. С. 1253. doi: 10.31857/S0044460X23080103; Dmitriev M.E., Shevchenko K.V., Shevchenko V.P., Nagaev I.Yu., Kalashnikova I.P., Ragulin V.V., Myasoedov N.F. // Russ. J. Gen. Chem. 2023. Vol. 93. N 8. P. 2022. doi: 10.1134/S1070363223080108
  15. Дмитриев М.Э., Винюков А.В., Рагулин В.В., Мясоедов Н.Ф. // ЖОХ. 2015. Т. 85. Вып. 9. С. 1576; Dmitriev M.E., Vinyukov A.V., Ragulin V.V., Myasoedov N.F. // Russ. J. Gen. Chem. 2015. Vol. 85. N 9. P. 2215. doi: 10.1134/S1070363215090315
  16. Dmitriev M.E., Ragulin V.V. // Tetrahedron Lett. 2010. Vol. 51. N. 19. P. 2613. doi: 10.1016/j.tetlet.2010.03.02013.
  17. Dmitriev M.E., Ragulin V.V. // Tetrahedron Lett. 2012. Vol. 53. N. 13. P. 1634. doi: 10.1016/j.tetlet.2012.01.09414.
  18. Dmitriev M.E., Golovash S.R., Borodachev A.V., Ragulin V.V. // J. Org. Chem. 2021. Vol. 86. N 1. P. 593. doi: 10.1021/acs.joc.0c02259

补充文件

附件文件
动作
1. JATS XML
2. Fig.1. 31P{1H} NMR spectra (202.48 MHz) of tetrapeptide 1 in CDCl3 (1), acetone-d6 (2), acetone-d6–D2O mixture (8:2, vol.) (3).

下载 (59KB)
3. Fig.2. 1H NMR spectra (500.2 MHz) of tetrapeptide 1 in CDCl3 (1), acetone-d6 (2), acetone-d6–D2O mixture (8:2, vol.) (3).

下载 (74KB)
4. Fig.3. 1H NMR spectrum (500.2 MHz) of tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, vol.).

下载 (194KB)
5. Fig.4. Fragment of the 1H NMR spectrum (500.2 MHz) of tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, vol.). Signals of histidine are marked in green, phenylalanine in blue, pseudoglutamine in red, and pseudomethionine in lilac.

下载 (183KB)
6. Fig.5. Fragment of the 1H NMR spectrum (500.2 MHz) of tetrapeptide 1 in acetone-d6 (region of NH and CH= protons).

下载 (142KB)
7. Fig.6. 13С{1H} NMR spectrum (125.79 MHz) of tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, vol).

下载 (133KB)
8. Fig.7. Fragment of the 13C{1H} NMR spectrum (125.79 MHz) of tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, vol.). The region of carboxyl and amide carbons is shown. The complexity of the signals is due to different diastereomeric and conformer forms.

下载 (87KB)
9. Fig.8. Fragment of the 13C{1H} NMR spectrum (125.79 MHz) of tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, vol.). The region of aromatic carbons is given.

下载 (79KB)
10. Fig.9. 1H–1H COSY NMR spectrum (500.2 MHz) of tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, vol.).

下载 (178KB)
11. Fig. 10. 1H–1H COSY NMR spectrum (500.2 MHz) of tetrapeptide 1 in acetone-d6. The area of NH group signals is shown.

下载 (261KB)
12. Fig. 11. 1H–13C HSQC NMR spectrum of tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, vol).

下载 (241KB)
13. Fig. 12. 1H–13C NMR spectrum of HMBC tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, v/v).

下载 (234KB)
14. Scheme 1.

下载 (64KB)
15. Scheme 2.

下载 (97KB)
16. Scheme 3.

下载 (77KB)

版权所有 © Russian Academy of Sciences, 2024