Lanthanide (Sm, Dy) Complexes with the 9,10-Phenanthrenediimine Redox-Active Ligand: Synthesis and Structures

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The complex formation of the redox-active ligand bis(N, N’-2,6-diisopropylphenyl)-9,10-phenanthrenediimine (DippPDI) with alkaline metal (Li, K) and lanthanide (Sm, Dy) cations is studied. The reduction of DippPDI with an alkaline metal excess affords the dianionic form of the ligand (DippPDA2–), which crystallizes with the potassium cation as the coordination polymer [K2(DippPDA)(Thf)3] (Thf is tetrahydrofuran, THF). The reaction of equimolar amounts of the lithium salt with the dianionic form of the ligand and neutral diimine affords the lithium complex with the radical-anion form (DippPSI•–) crystallized as [Li(DippPSI)(Thf)2]. The samarium(III) complex [SmCp*(DippPDA)(Тhf)] (I) is formed by the reduction ofDippPDI with samarocene [Sm (Thf)2] (Cp* is pentamethylcyclopentadienide): both the samarium(II) cation and Cp*– anion are oxidized in the reaction.DippPDI does not react with similar ytterbocene. The dysprosium(III) complexes are synthesized by the ion exchange reactions between DyI3(Thf)3.5 and potassium or lithium salt with theDippPDA2-dianion. Similar complexes [Dy(DippPDA)I(Thf)2] (IIThf) and [Dy(DippPDA)I(Thf)(Et2O)] () are formed in the reactions with the potassium salt depending on the solvent used: a THF-hexane or a diethyl ether-n-hexane mixture, respectively. The coordination of the dysprosium cation by the π system of the conjugated fragment of the NCCN ligand is observed in IIThf, whereas in this coordination is absent. The reaction with Li2(DippPDA) affords the binary complex salt [Li(Тhf)3(Et2O)][DyI2(DippPDA)(Тhf)] (III, crystallization from a THF-Et2O mixture). The crystallization from THF gives the [Li(Тhf)4][DyI2(DippPDA)(Thf)] salt (III') containing the same anion as III. The structures of all new complexes are studied by X-ray diffraction (XRD, CIF files CCDC nos. 2260307–2260313).

Texto integral

Acesso é fechado

Sobre autores

D. Sinitsa

Nikolaev Institute of Inorganic Chemistry, Siberian Branch

Autor responsável pela correspondência
Email: sinitsa@niic.nsc.ru
Rússia, Novosibirsk

D. Akimkina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch; Novosibirsk State University

Email: sinitsa@niic.nsc.ru
Rússia, Novosibirsk; Novosibirsk

T. Sukhikh

Nikolaev Institute of Inorganic Chemistry, Siberian Branch

Email: sinitsa@niic.nsc.ru
Rússia, Novosibirsk

S. Konchenko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch

Email: sinitsa@niic.nsc.ru
Rússia, Novosibirsk

N. Pushkarevskii

Nikolaev Institute of Inorganic Chemistry, Siberian Branch

Email: sinitsa@niic.nsc.ru
Rússia, Novosibirsk

Bibliografia

  1. Kaim W. // Inorg. Chem. 2011. V. 50. № 20. P. 9752.
  2. Tezgerevska T., Alley K. G., Boskovic C. // Coord. Chem. Rev. 2014. V. 268. P. 20.
  3. Wada T., Tanaka K., Muckerman J. T., Fujita E. // Mol. Water Oxid. Catal. 2014. P. 77.
  4. Kobayashi K., Ohtsu H., Wada T. et al. // J. Am. Chem. Soc. 2003. V. 125. № 22. P. 6729.
  5. Lippert C. A., Arnstein S. A., Sherrill C. D., Soper J. D. // J. Am. Chem. Soc. 2010. V. 132. № 11. P. 3879.
  6. Abakumov G. A., Poddel’sky A.I., Grunova E. V. et al. // Angew. Chem. Int. Ed. 2005. V. 44. № 18. P. 2767.
  7. Bruni S., Caneschi A., Cariati F. et al. // J. Am. Chem. Soc. 1994. V. 116. № 4. P. 1388.
  8. Bubnov M. P., Kozhanov K. A., Skorodumova N. A. et al. // J. Mol. Struct. 2019. V. 1180. P. 878.
  9. Piskunov A. V., Lado A. V. Fukin G. K. et al. // Heteroat. Chem. 2006. V. 17. № 6. P. 481.
  10. Kabachnik M. I., Bubnov N. N., Solodovnikov S. P., Prokof’ev A.I. // Russ. Chem. Rev. 1984. V. 53. № 3. P. 288.
  11. Hay M. A., Boskovic C. // Chem. A Eur. J. 2021. V. 27. № 11. P. 3608.
  12. Pushkarevsky N. A., Ogienko M. A., Smolentsev A. I. et al. // Dalton Trans. 2016. V. 45. № 3. P. 1269.
  13. Kuzyaev D. M., Vorozhtsov D. L., Druzhkov N. O. et al. // J. Organomet. Chem. 2012. V. 698. P. 35.
  14. Caneschi A., Dei A., Gatteschi D. et al. // Dalton Trans. 2004. № 7. P. 1048.
  15. Klementyeva S. V., Lukoyanov A. N., Afonin M. Y. et al. // Dalton Trans. 2019. V. 48. № 10. P. 3338.
  16. Coughlin E. J., Zeller M., Bart S. C. // Angew. Chem. Int. Ed. 2017. V. 56. № 40. P. 12142145.
  17. Maleev A. A., Trofimova O. Y., Pushkarev A. P. et al. // Nanotechnologies Russ. 2015. V. 10. № 7–8. P. 613.
  18. Sinitsa D. K., Sukhikh T. S., Konchenko S. N., Pushkarevsky N. A. // Polyhedron. 2021. V. 195. P. 114967.
  19. Subhedar Y., Ramachandra V. // Asian J. Chem. 1994. V. 6. № 2. P. 277.
  20. Ramachandra V., Patil B. // Curr. Sci. 1976. V. 45. № 19. P. 686.
  21. Su J., He F., Qi X., Wang J. // Huaxue Yu Shengwu Gongcheng. 2011. V. 28. № 4. P. 36.
  22. Schoo C., Bestgen S., Egeberg A. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 13. P. 4386.
  23. Reinfandt N., Michenfelder N., Schoo C. et al. // Chem. Eur. J. 2021. V. 27. № 29. P. 7862.
  24. Trifonov A. A., Shestakov B. G., Lyssenko K. A. et al. // Organometallics. 2011. V. 30. № 18. P. 4882.
  25. Fedushkin I. L., Yambulatov D. S., Skatova A. A. et al. // Inorg. Chem. 2017. V. 56. № 16. P. 9825.
  26. Fedushkin I. L., Maslova O. V., Baranov E. V., Shavyrin A. S. // Inorg. Chem. 2009. V. 48. № 6. P. 2355.
  27. Fedushkin I. L., Maslova O. V., Morozov A. G. et al. // Angew. Chem. Int. Ed. 2012. V. 51. № 42. P. 105847.
  28. Groom C. R., Bruno I. J., Lightfoot M. P., Ward, S.C. // Acta Crystallogr. B. 2016. V. 72. № 2. P. 171.
  29. Evans W. J., Grate J. W., Choi H. W. et al. // J. Am. Chem. Soc. 1985. V. 107. № 18. P. 941.
  30. Mironova O. A., Sukhikh T. S., Konchenko S. N., Pushkarevsky N. A. // Polyhedron. 2019. V. 159. P. 337.
  31. Cherkasov V. K., Druzhkov N. O., Kocherova T. N. et al. // Tetrahedron. 2012. V. 68. № 5. P. 1422.
  32. Sheldrick G. M. // Acta Crystallogr. Sect. A. 2015. V. 71. № 1. P. 3–8.
  33. Sheldrick G. M. // Acta Crystallogr. Sect. C. 2015. V. 71. № 1. P. 3–8.
  34. Dolomanov O. V., Bourhis L. J., Gildea R. J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
  35. Veauthier J. M., Schelter E. J., Carlson C. N. et al. // Inorg. Chem. 2008. V. 47. № 13. P. 5841.
  36. Abakumov G. A., Druzhkov N. O., Kocherova T. N. et al. // Dokl. Chem. 2016. V. 467. № 2. P. 109.
  37. Duraisamy R., Liebing P., Harmgarth N. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 28. P. 3343.
  38. Gao B., Luo X., Gao W. et al. // Dalton Trans. 2012. V. 41. № 9. P. 2755.
  39. Mironova O. A., Sukhikh T. S., Konchenko S. N., Pushkarevsky N. A. // Inorg. Chem. 2022. V. 61. № 39. P. 15484.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Cyclic voltammogram of the DippPDI ligand (THF, V = 0.2 V/s, relative to Ag+/Ag, c = 2 × × 10-3 mol/L, Pt electrode, Ar, 0.1 M Bu4NBF4).

Baixar (71KB)
3. Fig. 2. Characteristic fluctuations in the IR spectra of compounds DIPPPDI, [Li(DippPSI)(Thf)2], [K2(dippPDA)(Thf)3], I, II and III.

Baixar (158KB)
4. Fig. 3. The structure of the independent part in the structure of [K2(DippPDA)(Thf)3] according to XRD data (a); the mutual arrangement of three molecules of the complex in a crystalline package (b). Hydrogen atoms and methyl groups of Dipp substituents are not shown, hydrocarbon fragments are shown in simplified form; π-coordination is shown in dotted lines lines.

Baixar (174KB)
5. Fig. 4. The structure of [Li(DippPSI)(Thf)2] according to the RSA data. Hydrogen atoms and methyl groups of Dipp substituents are not shown, hydrocarbon fragments are shown in a simplified form.

Baixar (106KB)
6. Fig. 5. Structure of the [SmCp*(DippPDA)(Thf)] complex (I). Hydrogen atoms and methyl groups of Dipp substituents are not shown, hydrocarbon fragments are shown in a simplified form.

Baixar (120KB)
7. Fig. 6. The structure of the complexes [DyI(DippPDA)(Thf)(Et2O)] (IIEt2O) (a), [DyI(DippPDA)(Thf)2] (IIThf) (b). Hydrogen atoms and methyl groups of Dipp substituents are not shown, hydrocarbon fragments are shown in simplified form; π-coordination is shown by dotted lines.

Baixar (212KB)
8. Fig. 7. Structure of the double complex salt [Li(Thf)4][DyI2(DippPDA)(Thf)] (III'). Hydrogen atoms and methyl groups of Dipp substituents are not shown, hydrocarbon fragments are shown in a simplified form.

Baixar (133KB)
9. Scheme 1. Generalized structure of the studied ligands and redox transitions in them (a); the most studied types of diimine redox-active ligands and the ligand studied in this work (b).

Baixar (167KB)
10. Scheme 2. Preparation of complexes with the DippPDA2 ligand in redox reactions.

Baixar (77KB)
11. Scheme 2. Synthesis of complexes using ion exchange reactions.

Baixar (133KB)

Declaração de direitos autorais © Российская академия наук, 2024