Синтез и кристаллическая структура комплексов кобальта с кукурбит[6]урилом
- Авторы: Андриенко И.В.1, Самсоненко Д.Г.1, Коваленко Е.А.1
-
Учреждения:
- Институт неорганической химии им. А. В. Николаева СО РАН
- Выпуск: Том 51, № 10 (2025)
- Страницы: 611-620
- Раздел: Статьи
- URL: https://medjrf.com/0132-344X/article/view/695904
- DOI: https://doi.org/10.7868/S3034549925100029
- ID: 695904
Цитировать
Полный текст
Аннотация
Четыре комплекса кобальта с кукурбит[6]урилом (CB[6]) состава [Co(H2O)6](Bdc) · CB[6] · · 14.5H2O (I), 2(H2NMe2)2[CoCl4] · CB[6] ·12H2O (II), [{Co(H2O)4Cl}4(CB[6])]Cl4 · 9H2O (III) и [Co(H2O)6][Co(H2O)5(Dmf)][CoCl4]2 · CB[6] · 6H2O (IV) получены при упаривании реакционного раствора, содержащего хлорид кобальта и кукурбит[6]урил (CB[6]). По данным РСА, соединение I представляет собой упаковку катионных аквакомплексов кобальта, терефталат-анионов и молекул CB[6], связанных между собой в супрамолекулярный каркас посредством водородных связей с молекулами кристаллизационной воды. Структура соединения II представляет собой упаковку молекул CB[6], катионов диметиламмония и анионных хлорокомлексов кобальта. Соединение III содержит в себе четырехъядерные катионные хлороаквакомплексы кобальта с CB[6], а в качестве противоионов выступают анионы хлорa. Кристаллическая структура соединения IV представляет собой упаковку катионных аквакомплексов кобальта, анионных хлорокомплексов кобальта и молекул CB[6], связанных между собой водородными связями с кристаллизационными молекулами воды в супрамолекулярный каркас. Полученные соединения охарактеризованы ИК-cпектрами, данными элементного анализа.
Ключевые слова
Об авторах
И. В. Андриенко
Институт неорганической химии им. А. В. Николаева СО РАННовосибирск, Россия
Д. Г. Самсоненко
Институт неорганической химии им. А. В. Николаева СО РАННовосибирск, Россия
Е. А. Коваленко
Институт неорганической химии им. А. В. Николаева СО РАН
Email: e.a.kovalenko@niic.nsc.ru
Новосибирск, Россия
Список литературы
- Demakov P.A., Kovalenko K.A., Lavrov A.N. et al. // Inorganics. 2023. V. 11. № 6. P. 259. https://doi.org/10.3390/inorganics11060259
- Abasheeva K.D., Demakov P.A., Polyakova E.V. et al. // Nanomaterials. 2023. V. 13. P. 2773. https://doi.org/10.3390/nano13202773
- Павлов Д.И., Лавров А.Н., Самсоненко Д.Г. и др. // Коорд. химия. 2024. Т. 50. № 9. С. 577 (Pavlov D.I., Lavrov A.N., Samsonenko D.G. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 9. P. 673). https://doi.org/10.1134/S1070328424600475
- Ishil N., Okamura Y., Chiba S. et al. // J. Am. Chem. Soc. 2008. V. 130. P. 24. https://doi.org/10.1021/ja077666e
- Wang X.L., Bao X., Wei Y.J. et al. // Z. Anorg. Allg. Chem. 2015. V. 641. P. 573. https://doi.org/10.1002/zaac.201400429
- Xu Y.H., Qu X.N., Song H.B. et al. // Polyhedron. 2007. V. 26. P. 741. https://doi.org/10.1016/j.poly.2006.08.036
- Zhang C.X., Zhang Y.Y., Sun Y.Q. // Polyhedron. 2010. V. 29. P. 1387. https://doi.org/10.1016/j.poly.2009.12.039
- Ghosh S., Kamilya S., Das M. et al. // Inorg. Chem. 2020. V. 59. № 10. P. 7067. https://doi.org/10.1021/acs.inorgchem.0c00538
- Song D., Li B., Li X. et al. // ChemSusChem. 2020. V. 13. P. 394. https://doi.org/10.1002/cssc.201902668
- Kovalenko E.A., Mit’kina T.V., Geras’ko O.A. et al. // Russ. Coord. Chem. 2011. V. 37. P. 163 (Коваленко Е. А., Митькина Т. В., Герасько О. А. и др. // Коорд. химия. 2011. Т. 37. № 2. С. 1). https://doi.org/10.1134/S1070328411020023
- Mitkina T.V., Sokolov M.N., Naumov D.Y. et al. // Inorg. Chem. 2006. V. 45. P. 6950. https://doi.org/10.1021/ic060502z
- Yi S., Captain B., Ottaviani M.F. et al. // Langmuir. 2011. V. 27. № 9. P. 5624. https://doi.org/10.1021/la2005198
- Zheng J., Meng Y., Zhang L. et al. // Inorg. Chim. Acta. 2022. V. 529. Р. 120669. https://doi.org/10.1016/j.ica.2021.120669
- Zheng J., Ma Y., Yanga X. et al. // RSC Adv. 2022. V. 12. Р. 18736. https://doi.org/10.1021/10.1039/d2ra02459d
- Limei Z., Jiannan Z., Yunqian Z. et al. // Supramol. Chem. 2008. V. 20. № 8. P. 709. https://doi.org/10.1080/10610270701747602
- Shuai X., Kai-Wen C., Ming-Hui Z. et al. // Chin. J. Inorg. Chem. 2023. V. 39. P. 585. https://doi.org/10.11862/CJIC.2023.037
- Liang Z.-Y., Chen H.-Y., Shan C.-Y. et al. // Polyhedron. 2016. V. 110. P. 125. http://dx.doi.org/10.1016/j.poly.2016.02.029
- Min W., Ren Q., Yuan X.-Y. et al. // J. Mol. Struc. 2023. V. 1294. P. 136429. https://doi.org/10.1016/j.molstruc.2023.136429
- Liang L.-L., Zhao Y., Chen K. et al. // Polymers. 2013. V. 5. P. 418. https://doi.org/10.3390/polym5020418
- Wang Z.-B., Zhao M., Li Y.-Z. et al. // Supramol. Chem. 2008. V. 20. № 8. P. 689. https://doi.org/10.1080/10610270701732877
- Андриенко И.В., Коваленко Е.А., Кардамонова И.Е. и др. // Коорд. химия. 2019. T. 45. № 6. С. 372 (Andrienko I.V., Kovalenko E.A., Karmadonova I.E. et al. // Russ. J. Coord. Chem. 2019. V. 45, № 6, P. 433). https://doi.org/10.1134/S1070328419060010
- Day A., Arnold A.P., Blanch R.J. et al. // J. Org. Chem., 2001. V. 66. P. 8094. https://doi.org/10.1021/jo015897c
- Bruker Apex3 Software Suite: Apex3, SADABS-2016/2 and SAINT. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2017.
- CrysAlisPro Software system, version 1.171.42.89a. Rigaku Oxford Diffraction, Rigaku Corporation, Wrocław, Poland, 2023.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S205327331402637
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. №. 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Cryst. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
- Spek A.L. // Acta Crystallogr. 2015. V. 71. № 1. P. 9. https://doi.org/10.1107/S2053229614024929
- Kovalenko E.A., Samsonenko D.G., Naumov D.Yu. et al. // J. Struc. Chem. 2014. V. 55. S274. https://doi.org/10.1134/S0022476614080113
- Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Pt B. Wiley, 2009. 416 p.
Дополнительные файлы




