Acyclic Diaminocarbene Platinum(IV) Complexes Synthesized by the Oxidative Addition of MeI and I2

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The oxidative addition of methyl iodide or molecular iodine to the bis(С,N-chelate) deprotonated diaminocarbene platinum(II) complexes [Pt{C(N(H)Ar)(NC(N(H)Ph)N(Ph)}2] (Ar = C6H3-2,6-Me2 (Xyl), C6H2-2,4,6-Me3 (Mes), and C6H4-4-Me (pTol)) affords the corresponding platinum(IV) derivatives in a yield of 89–99%. The addition of CF3CO2H is accompanied by the protonation of the nitrogen atoms of the diaminocarbene fragment to form the cationic complexes [[PtI(X)-{C(N(H)Ar)(NC(N(H)Ph)N(Ph)}2]CF3CO2H (X = Me, I). The structures of the compounds are determined by elemental analysis; high resolution mass spectrometry with electrospray ionization (ESI HRMS); IR spectroscopy; 1H, 13C{1H}, 19F{1H}, and 195Pt{1H} NMR spectroscopy; 2D NMR spectroscopy (1H,1Н COSY, 1H,1Н NOESY, 1H,13C HSQC, 1H,13C HMBC, 1H,15N HSQC, 1H,15N HMBC), and X-ray diffraction

(XRD) and thermogravimetric analyses. The synthesized platinum(IV) complexes are thermally stable to 200–260°C and are electroneutral molecules with the octahedral coordination sphere formed by two deprotonated diaminocarbene C,N-chelate substituents and iodine and methyl or two iodine atoms localized in the apical positions.

全文:

受限制的访问

作者简介

A. Karchevsky

Saint Petersburg State University

Email: s.katkova@spbu.ru
俄罗斯联邦, Saint Petersburg

M. Kinzhalov

Saint Petersburg State University

Email: s.katkova@spbu.ru
俄罗斯联邦, Saint Petersburg

S. Katkova

Saint Petersburg State University

编辑信件的主要联系方式.
Email: s.katkova@spbu.ru
俄罗斯联邦, Saint Petersburg

参考

  1. Labinger, J.A., Organometallics, 2015, vol. 34, no. 20, p. 4784.
  2. Crespo, M., Martinez, M., Nabavizadeh, S.M., et al., Coord. Chem. Rev., 2014, vol. 279, p. 115.
  3. Rendina, L.M. and Puddephatt, R.J., Chem. Rev., 1997, vol. 97, no. 6, p. 1735.
  4. Shahsavari, H.R., Babadi Aghakhanpour, R., Babaghasabha. M., et al., Eur. J. Inorg. Chem., 2017, vol. 2017, no. 20, p. 2682.
  5. Shahsavari, H.R., Babadi Aghakhanpour, R., Fereidoonnezhad, M., et al., New J. Chem., 2018, vol. 42, no. 4, p. 2564.
  6. Hamidizadeh, P., Nabavizadeh, S.M., and Hoseini, S.J., Dalton Trans., 2019, vol. 48, no. 10, p. 3422.
  7. Chamyani, S., Shahsavari, H.R., Abedanzadeh, S., et al., Appl. Organomet. Chem., 2019, vol. 33, no. 1, p. 4674.
  8. Habibzadeh, S., Rashidi, M., Nabavizadeh, S.M., et al., Organometallics, 2010, vol. 29, no. 1, p. 82.
  9. Shahsavari, H.R., Aghakhanpour, R.B., Hossein-Abadi, M., et al., Appl. Organomet. Chem., 2018, vol. 32, no. 4, p. 4216.
  10. Aghakhanpour, R.B., Nabavizadeh, S.M., Mohammadi, L., et al., J. Organomet. Chem., 2015, vol. 781, p. 47.
  11. Nahaei, A., Rasekh, A., Rashidi, M., et al., J. Organomet. Chem., 2016, vols. 815–816, p. 35.
  12. Hoseini, S.J., Mohamadikish, M., Kamali, K., et al., Dalton Trans., 2007, vol. 17, p. 1697.
  13. Tsoureas, N. and Danopoulos, A.A., J. Organomet. Chem., 2015, vol. 775, p. 178.
  14. Bennett, M.A., Bhargava, S.K., Ke, M., et al., Dalton Trans., 2000, vol. 20, p. 3537.
  15. Kinzhalov, M. and Luzyanin, K., Russ. J. Inorg. Chem., 2022, vol. 67, p. 48.
  16. Serra, D., Cao, P., Cabrera, J., et al., Organometallics, 2011, vol. 30, no. 7, p. 1885.
  17. Mastrocinque, F., Anderson, C.M., Elkafas, A.M., et al., J. Organomet. Chem., 2019, vol. 880, p. 98.
  18. Prokopchuk, E.M. and Puddephatt, R.J., Organometallics, 2003, vol. 22, no. 3, p. 563.
  19. Katkova, S.A., Kinzhalov, M.A., Tolstoy, P.M., et al., Organometallics, 2017, vol. 36, no. 21, p. 4145.
  20. Kashina, M.V., Karcheuski, A.A., Kinzhalov, M.A., et al., Molecules, 2023, vol. 28, no. 23, p. 7764. https://doi.org/10.3390/molecules28237764
  21. Hubschle, C.B., Sheldrick, G.M., and Dittrich, B., J. Appl. Crystallogr., 2011, vol. 44, no. 6, p. 1281.
  22. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, no. 2, p. 339.
  23. Oxford Diffraction, CrysAlis PRO, Yarnton: Oxford Diffraction Ltd, 2009.
  24. Kashina, M.V., Luzyanin, K.V., Katlenok, E.A., et al., Dalton Trans., 2022, vol. 51, no. 17, p. 6718.
  25. Stuart, B.H., Infrared Spectroscopy: Fundamentals and Applications, New York: Wiley, 2004.
  26. Fujisawa, K., Kobayashi, Y., Okano, M., et al., Molecules, 2023, vol. 28, no. 7, p. 2936.
  27. Akhmadullina, N.S., Borissova, A.O., Garbuzova, I.A., et al., Z. Anorg. Allg. Chem., 2013, vol. 639, no. 2, p. 392.
  28. Ghedini, M., Pucci, D., Crispini, A., et al., Organometallics, 1999, vol. 18, no. 11, p. 2116.
  29. Exposito, J.E., Aullon, G., Bardaji, M., et al., Dalton Trans., 2020, vol. 49, no. 38, p. 13326.
  30. Fatemeh, N.H., Farasat, Z., Nabavizadeh, S.M., et al., J. Organomet. Chem., 2019, vol. 880, p. 232.
  31. Jamali, S., Czerwieniec, R., Kia, R., et al., Dalton Trans., 2011, vol. 40, no. 36, p. 9123.
  32. Exposito, J.E., Alvarez-Paino, M., Aullon, G., et al., Dalton Trans., 2015, vol. 44, no. 36, p. 16164.
  33. Shafaatian, B. and Heidari, B., J. Organomet. Chem., 2015, vol. 780, p. 34.
  34. Frauhiger, B.E., White, P.S., and Templeton, J.L., Organometallics, 2012, vol. 31, no. 1, p. 225.
  35. Altus, K.M., Bowes, E.G., Beattie, D.D., et al., Organometallics, 2019, vol. 38, no. 10, p. 2273.
  36. Katkova, S.A., Kozina, D.O., Kisel, K.S., et al., Dalton Trans., 2023, vol. 52, no. 14, p. 4595.
  37. Owen, J.S., Labinger, J.A., and Bercaw, J.E., J. Am. Chem. Soc., 2004, vol. 126, no. 26, p. 8247.
  38. Hardman, N.J., Abrams, M.B., Pribisko, M.A., et al., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, no. 15, p. 1955.
  39. Meyer, D., Ahrens, S., and Strassner, T., Organometallics, 2010, vol. 29, no. 15, p. 3392.
  40. Kelly, M.E., Dietrich, A., Gomez-Ruiz, S., et al., Organometallics, 2008, vol. 27, no. 19, p. 4917.
  41. Maidich, L., Zucca, A., Clarkson, G.J., et al., Organometallics, 2013, vol. 32, no. 11, p. 3371.
  42. Shaw, P.A. and Rourke, J.P., Dalton Trans., 2017, vol. 46, no. 14, p. 4768.
  43. Zhang, F., Broczkowski, M.E., Jennings, M.C., et al., Can. J. Chem., 2005, vol. 83, nos. 6–7, p. 595.
  44. Shaw, P.A., Phillips, J.M., Clarkson, G.J., et al., Dalton Trans., 2016, vol. 45, no. 28, p. 11397.
  45. Yahav, A., Goldberg, I., and Vigalok, A., Organometallics, 2005, vol. 24, no. 23, p. 5654.
  46. Westra, A.N., Bourne, S.A., and Koch, K.R., Dalton Trans., 2005, no. 17, p. 2916.
  47. Westra, A.N., Bourne, S.A., Esterhuysen, C., et al., Dalton Trans., 2005, no. 12, p. 2162.
  48. Goldberg, K.I., Yan, J., and Breitung, E.M., J Am. Chem. Soc., 1995, vol. 117, no. 26, p. 6889.
  49. Baar, C.R., Jenkins, H.A., Vittal, J.J., et al., Organometallics, 1998, vol. 17, no. 13, p. 2805.
  50. Fischer, E.O. and Maasbol, A., Chem. Ber., 1967, vol. 100, no. 7, p. 2445.
  51. Bondi, A., J. Phys. Chem., 1964, vol. 68, no. 3, p. 441.
  52. Desiraju, G.R., Ho, P.S., Kloo, L., et al., Pure Appl. Chem., 2013, vol. 85, no. 8, p. 1711

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1

下载 (179KB)
3. Fig. 1. Fragment of the 1H,13C-HMBC IIa ∙ CF3CO2H NMR spectrum

下载 (167KB)
4. Fig. 2. Molecular structures of IIa ∙ (CH3)2CO (a) and IIIa ∙ CH2Cl2 (b) in thermal ellipsoids of 50% probability. The solvent molecules are hidden

下载 (515KB)
5. Fig. 3. Supramolecular structure of IIIv in thermal ellipsoids of 50% probability

下载 (233KB)

版权所有 © Российская академия наук, 2024