Parameters of decomposition and combustion of reed vegetation: 1. Mechanism and kinetics of thermo-oxidative decomposition and pyrolysis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The parameters of decomposition and combustion of reed plants are formulated, which characterize combustible material and are necessary for physical and mathematical modeling of the occurrence and development of a fire, determining the risk of its consequences. According to the results of TGA, the content of the main components in the leaves and stem of the plant was estimated, the mechanism and parameters of the macrokinetics of their thermal-oxidative decomposition and pyrolysis were determined.

Texto integral

Acesso é fechado

Sobre autores

R. Aseeva

State Fire Academy of Emercom of Russia

Email: 89268196698@mail.ru
Rússia, Moscow

E. Kruglov

State Fire Academy of Emercom of Russia

Autor responsável pela correspondência
Email: 89268196698@mail.ru
Rússia, Moscow

A. Kobelev

State Fire Academy of Emercom of Russia

Email: 89268196698@mail.ru
Rússia, Moscow

Y. Naganovsky

All-Russian Research Institute for Fire Protection

Email: 89268196698@mail.ru
Rússia, Balashikha city

B. Serkov

State Fire Academy of Emercom of Russia

Email: 89268196698@mail.ru
Rússia, Moscow

Bibliografia

  1. Glushkov I.V., Lupachik V.V., Zhuravleva I.V. et al. // Forest science issues. 2021. V. 4(2). № 84. https://doi.org/10.31509/2658-607x-2021424
  2. Berlin A.A. // Polymer Science Series. C. 2021. V. 63. P. 1. https://doi.org/10.1134/S181123822101001X
  3. Rybalkina M. // https://161.ru/text/incidents/ 2020/03/28/69057250/
  4. Kislov V.M., Tsvetkov M.V., Zaichenko A.Yu. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 819. https://doi.org/10.1134/S1990793121050055
  5. Kask U., Kask L., Link S. // Mire. Peat. 2013. V. 13. № 5.
  6. Alhumade H., da Silva J.C.G., Ahmad M.S. et al. // J. Anal. Appl. Pyrolysis. 2019. V. 140. P. 385.
  7. Peres Ch.B., Rosa A.H., De Morais L.C. // SN Appl. Sci. 2021. V. 3. № 337. https://doi.org/10.1007/s42452-021-04345-6
  8. Li J., Qiao Y., Zong P. et al. // Energy Fuels. 2019. V. 33. P. 3299.
  9. Smirnova A.N., Shvydkiy V.O., Shishkina L.N. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 710. https://doi.org/10.1134/S1990793121040102
  10. Wasserman L.A., Plashchina I.G., Filatova A.G., Khatefov E.B., Goldshtein V.G. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 161. https://doi.org/10.1134/S1990793121010292
  11. Shafizadeh F., McGinnis G.D. // Carbohydr. Res. 1971. V. 16. P. 273.
  12. Bonanno G., Giudice R.Lo. // Ecol. Indic. 2010. V. 10. № 3. P. 639. https://doi.org/10.1016/j.ecolind.2009.11.002
  13. Kissinger H.E. // Anal. Chem. 1957. V. 29. № 11. P. 1702. https://doi.org/10.1021/ac60131a045
  14. Mamleev V., Bourbigot S., Le Bras M. et al. // J. Therm. Anal. Calorim. 2004. V. 78. № 3. P.1009. https://doi.org/10.1007/s10973-004-0467-7
  15. Mamleev V., Bourbigot S., Yvon J. // J. Anal. Appl. Pyrolysis. 2007. V. 80. P. 151. https://doi.org/10.1016/j.jaap.2007.01.013
  16. Сriado J.M. // Thermochim. Acta. 1978. V. 24. № 1. P. 186. https://doi.org/10.1016/0040-6031(78)85151-x
  17. Rogers F.E., Ohlemiller T.J. // J. Macromol. Sci.-Chem. 1981. V. 15. № 1. P. 169. https://doi.org/10.1080/00222338108066438
  18. Gorbachev V.M. // J. Therm. Anal. 1975. V. 8. P. 349. https://doi.org/10.1007/BF01904012
  19. Aseeva R.M., Sakharov P.A., Sakharov A.M. // Russ. J. Chem. Phys. B. 2009. V. 3. № 5. P. 844.
  20. Aleshina L.A., Glazkova S.V., Lugovskaya L.A. et al. // Chemistry Plant Raw Materials. 2001. V. 1. P. 5.
  21. Perova A.N., Brevnov P.N., Usachev S.V. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 716. https://doi.org/10.1134/S1990793121040072
  22. Kim U.J., Eom S.H., Wada M. et al. // Polym. Degrad. Stabil. 2010. V. 95. № 5. P. 778. https://doi.org/10.1016/j.polymdegradstab.2010.02.009
  23. Wang Z., McDonald A., Westerhof R. et al. // J. Anal. Appl. Pyrolysis. 2013. V. 100. P. 56. https://doi.org/10.1016/j.jaap.2012.11.017
  24. Paajanen A., Rinta-Paavola A., Vaari J. // Cellulose. 2021. V. 28. № 14. P. 8987. https://doi.org/10.1016/j.tca.2012.11.003
  25. Pérez-Maqueda L.A., Perejón A., Criado J.M. // Thermochim. Acta. 2013. V. 552. P. 54. https://doi.org/10.1016/j.tca.2012.11.003

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. a – TG, b – DTG, c – DSC curves of the TOD of a reed leaf, obtained by heating the sample at a rate of 5 °C/min.

Baixar (233KB)
3. Fig. 2. a – TG, b – DTG, c – DSC curves of the TOD of a reed stem when heating the sample at a rate of 20 °C/min.

Baixar (234KB)
4. Fig. 3. TG and DTG curves of mass loss when heating a sheet to a temperature of 700 °C at a rate of 5 °C/min first in nitrogen, then in air.

Baixar (92KB)
5. Fig. 4. TG and DTG curves of mass loss when heating the stem to a temperature of 700 °C at a rate of 5 °C/min first in nitrogen, then in air.

Baixar (100KB)
6. Fig. 5. Anamorphoses of kinetic curves of TOD components of reed leaf (a) and stem (b) : 1 – extractives; 2 – hemicellulose; 3 – amorphous cellulose; 4 – crystalline cellulose; 5 – lignin; 6 – coke; Χ – values obtained on a Mettler Toledo installation; Ο – on a Du Pont 9900.

Baixar (115KB)
7. Fig. 6. TG and DTG curves of reed leaf decomposition in a nitrogen flow at different heating rates: 1 – 5, 2 – 10, 3 – 20 °C/min.

Baixar (110KB)
8. Fig. 7. TG and DTG curves of stem decomposition in a nitrogen flow at different heating rates: 1 – 5, 2 – 10, 3 – 20 °C/min.

Baixar (104KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024