Thermal ablation of soft tissue by a single shock wave sonication of discrete foci within the given volume

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New protocols have been developed for shockwave irradiation of soft tissue volumes using trajectories uniformly filled within the given shape by discrete foci, while pulsed millisecond sonication immediately formed a single ablation. The influence of the initial peak power with the same time-average power, the interfocus distance and the geometry of the external contour of the trajectory on the shape, volume and ablation rate was analyzed. The most advantageous is the saturation mode using a trajectory with an interfocus step 1.5 times greater than the transverse size of a single lesion. To obtain volumes of thermal ablation on the order of cubic centimeters, layer-by-layer sonication protocols are proposed, which allow to 2.5 times greater thermal ablation rate compared with protocols used in clinical practice. The advantage of the proposed shockwave protocols is the possibility of obtaining localized and predictable thermal damage without accompanying MRI monitoring.

Full Text

Restricted Access

About the authors

P. A. Pestova

Lomonosov Moscow State University

Author for correspondence.
Email: ppolina-98@yandex.ru

Faculty of Physics

Russian Federation, Leninskie Gory, GSP-1, Moscow, 119991

P. V. Yuldashev

Lomonosov Moscow State University

Email: ppolina-98@yandex.ru

Faculty of Physics

Russian Federation, Leninskie Gory, GSP-1, Moscow, 119991

V. A. Khokhlova

Lomonosov Moscow State University

Email: ppolina-98@yandex.ru

Faculty of Physics

Russian Federation, Leninskie Gory, GSP-1, Moscow, 119991

M. M. Karzova

Lomonosov Moscow State University

Email: ppolina-98@yandex.ru

Faculty of Physics

Russian Federation, Leninskie Gory, GSP-1, Moscow, 119991

References

  1. Хилл К.Р., Бэмбер Дж. Ультразвук в медицине. Физические основы применения. Под ред. тер Хаар Г. Пер. с англ. М.: Физматлит, 2008.
  2. Гаврилов Л.Р. Фокусированный ультразвук высокой интенсивности в медицине. М.: Фазис, 2013.
  3. Duc N.M., Keserci B. Emerging clinical applications of high-intensity focused ultrasound // Diagn. Interv. Radiol. 2019. V. 25. P. 398–409.
  4. Crouzet S., Chapelon J.Y., Rouvière O., Mege-Lechevallier F., Colombel M., Tonoli-Catez H., Martin X., Gelet A. Whole-gland ablation of localized prostate cancer with high-intensity focused ultrasound: oncologic outcomes and morbidity in 1002 patients // Eur. Urol. 2014. V. 65. P. 907–914.
  5. Meng Y., Solomon B., Boutet A., Llinas M., Scantlebury N., Huang Y., Hynynen K., Hamani C., Fasano A., Lozano A.M., Lipsman N,. Schwartz M.L. Magnetic resonance-guided focused ultrasound thalamotomy for treatment of essential tremor: A 2-year outcome study // Mov. Disord. 2018. V. 33. P. 1647–1650.
  6. Harding D., Giles S.L., Brown M.R.D., ter Haar G.R., van den Bosch M., Bartels L.W., Kim Y.-S., Deppe M., de Souza N.M. Evaluation of quality of life outcomes following palliative treatment of bone metastases with magnetic resonance-guided high intensity focused ultrasound: an international multicentre study // Clin. Oncol. 2018. V. 30. P. 233–242.
  7. Fabi S.G. Noninvasive skin tightening: focus on new ultrasound techniques // Clin. Cosmet. Investig. Dermatology. 2015. V. 8. P. 47–52.
  8. Mouratidis P.X.E., ter Haar G. Latest advances in the use of therapeutic focused ultrasound in the treatment of pancreatic сancer // Cancers. 2022. V. 14. № 3. P. 638.
  9. Бэйли М.Р., Хохлова В.А., Сапожников О.А., Каргл С.Г., Крам Л.А. Физические механизмы воздействия терапевтического ультразвука на биологическую ткань // Акуст. журн. 2003. Т. 49. № 4. С. 437–464.
  10. Mougenot C., Köhler M.O., Enholm J., Quesson B., Moonen C. Quantification of near-field heating during volumetric MR-HIFU ablation // Med. Phys. 2011. V. 38. P. 272–282.
  11. Quesson B., Merle M., Kohler M.O., Mougenot C., Roujol S., de Senneville B.D., Moonen C.T. A method for MRI guidance of intercostal high intensity focused ultrasound ablation in the liver // Med. Phys. 2010. V. 37. № 6. P. 2533–2540.
  12. Kim Y.S., Keserci B., Partanen A., Rhim H., Lim H.K., Park M.J., Köhler M.O. Volumetric MR-HIFU ablation of uterine fibroids: role of treatment cell size in the improvement of energy efficiency // Eur. J. Radiol. 2012. V. 81. № 11. P. 3652−3659.
  13. Khokhlova V.A. Use of shock-wave exposures for accelerating thermal ablation of targeted tissue volumes // Focused Ultrasound Foundation Final Report. June 5. 2019.
  14. Khokhlova V.A., Bailey M.R., Reed J.A., Cunitz B.W., Kaczkowski P.J., Crum L.A. Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom // J. Acoust. Soc. Am. 2006. V. 119. № 3. P. 1834–1848.
  15. Yuldashev P.V., Shmeleva S.M., Ilyin S.A., Sapozhnikov O.A., Gavrilov L.G., Khokhlova V.A. The role of acoustic nonlinearity in tissue heating behind the rib cage using high intensity focused ultrasound phased array // Phys. Med. Biol. 2013. V. 58. № 8. P. 2537–2559.
  16. Филоненко E.А., Хохлова В.А. Эффекты акустической нелинейности при терапевтическом воздействии мощного фокусированного ультразвука на биологическую ткань // Акуст. журн. 2001. Т. 47. № 4. С. 541–549.
  17. Khokhlova T.D., Canney M.S., Khokhlova V.A., Sapozhnikov O.A., Crum L.A., Bailey M.R. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling // J. Acoust. Soc. Am. 2011. V. 130. № 5. P. 3498−3510.
  18. Hynynen K. Demonstration of enhanced temperature elevation due to nonlinear propagation of focussed ultrasound in dog’s thigh in vivo // Ultrasound Med. Biol. 1987. V. 36. № 2. P. 85–91.
  19. Köhler M.O., Mougenot C., Quesson B., Enholm J., Le Bail B., Laurent C., Moonen C.T.W., Ehnholm G.J. Volumetric HIFU ablation under 3D guidance of rapid MRI thermometry // Med. Phys. 2009. V. 36. № 8. P. 3521–3535.
  20. Mougenot C., Salomir R., Palussière J., Grenier N., Moonen C.T.W. Automatic spatial and temporal temperature control for MR-guided focused ultrasound using fast 3D MR thermometry and multispiral trajectory of the focal point // Magn. Reson. Med. 2004. V. 52. P. 1005–1015.
  21. Fan X., Hynynen K. Ultrasound surgery using multiple sonications – treatment time considerations // Ultrasound Med. Biol. 1996. V. 22. № 4. P. 471–482.
  22. Enholm J.K., Köhler M.O., Quesson B., Mougenot C., Moonen C.T., Sokka S.D. Improved volumetric MR-HIFU ablation by robust binary feedback control // IEEE Trans. Biomed. Eng. 2010. V. 57. № 1. P. 103−113.
  23. Андрияхина Ю.С., Карзова М.М., Юлдашев П.В., Хохлова В.А. Ускорение тепловой абляции объемов биологической ткани с использованием фокусированных ультразвуковых пучков с ударными фронтами // Акуст. журн. 2019. Т. 65. № 2. С. 1−12.
  24. Пестова П.А., Хохлова В.А., Юлдашев П.В., Карзова М.М. Использование фокусированных ударно-волновых пучков для подавления эффектов диффузии при объемной тепловой абляции биоткани // Акуст. журн. 2023. Т. 69. № 4. С. 417−429.
  25. Пестова П.А., Карзова М.М., Юлдашев П.В., Крайдер У., Хохлова В.А. Влияние траектории перемещения фокуса на равномерность температурного поля при импульсном воздействии мощного ультразвукового пучка на биологическую ткань // Акуст. журн. 2021. Т. 57. № 3. С. 250−259.
  26. Пестова П.А., Юлдашев П.В., Хохлова В.А., Карзова М.М. Влияние траектории облучения на скорость тепловой абляции и объем разрушенной биоткани при ударно-волновом воздействии фокусированным ультразвуком // Известия РАН. Серия физическая. 2024. Т. 88. № 1. С. 125–130.
  27. Kreider W., Yuldashev P.V., Sapozhnikov O.A., Farr N., Partanen A., Bailey M.R., Khokhlova V.A. Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2013. V. 60. № 8. P. 1683–1698.
  28. Карзова М.М., Аверьянов М.В., Сапожников О.А., Хохлова В.А. Механизмы насыщения в нелинейных фокусированных импульсных и периодических акустических пучках // Акуст. журн. 2012. Т. 58. № 1. С. 93–102.
  29. Rosnitskiy P.B., Yuldashev P.V., Sapozhnikov O.A., Maxwell A.D., Kreider W., Bailey M.R., Khokhlova V.A. Design of HIFU transducers for generating specified nonlinear ultrasound fields // IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2017. V. 64. № 2. P. 374–390.
  30. Karzova M.M., Kreider W., Partanen A., Khokhlova T.D., Sapozhnikov O.A., Yuldashev P.V., Khokhlova V.A. Comparative characterization of nonlinear ultrasound fields generated by Sonalleve V1 and V2 MR-HIFU systems // IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2023. V. 70. № 6. P. 521–537.
  31. Юлдашев П.В., Хохлова В.А. Моделирование трехмерных нелинейных полей ультразвуковых терапевтических решеток // Акуст. журн. 2011. Т. 57. № 3. С. 337−347.
  32. Duck F.A. Physical Properties of Tissue. London: Academic Press, 1990.
  33. https://itis.swiss/virtual-population/tissue-properties/database/acoustic-properties/
  34. Sapareto S.A., Dewey W.C. Thermal dose determination in cancer therapy // Int. J. Radiat. Oncol. Biol. Phys. 1984. V. 10. № 6. P. 787−800.
  35. Venkatesan A.M., Partanen A., Pulanic T.K., Dreher M.R., Fischer J., Zurawin R.K., Muthupillai R., Sokka S., Nieminen H.J., Sinaii N., Merino M., Wood B.J., Stratton P. Magnetic resonance imaging–guided volumetric ablation of symptomatic leiomyomata: correlation of imaging with histology // J. Vasc. Interv. Radiol. 2012. V. 23. № 6. P. 786–794.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a) — Schematic diagram of the numerical experiment. The ultrasound beam is created by a randomized HIFU array (256 round elements with a diameter of 6.6 mm) with an aperture of 128 mm, an operating frequency of 1.2 MHz, and a focal length of F = 120 mm. Focusing occurs into a beef liver tissue sample to a depth of h = 2.5 cm, the emitter and the tissue sample are placed in water. (b) — Pressure profiles at the array focus in the tissue for the saturation mode (I₀ = 15 W/cm², red line) and the mode with the formation of a developed gap (I₀ = 8 W/cm², blue dash-dotted line). (c, d) — Discrete trajectories of a single impact on each focus, limited by an external contour in the form of equal in area (c) — a circle with a radius of 4 mm and (d) — a square with a side of 7 mm; The foci are located on a uniform grid with a step of s. The spiral sequence of the electronic movement of the grid focus is shown in the highlighted circle by an arrow (from the center outward).

Download (237KB)
3. Fig. 2. Spatial distributions of temperature at the moment of completion of heating t under shock wave irradiation in the saturation mode (I₀ = 15 W/cm², left column) and in the mode of formation of a developed discontinuity (I₀ = 8 W/cm², right column) along a discrete trajectory limited by an external contour in the form of a circle, with different interfocal distances s: (a) — 0.40, (b) — 0.55, (c) — 0.60, (d) — 0.65, (e) — 0.75 mm for 15 W/cm² and (f) — 0.25, (g) — 0.45, (h) — 0.50, (i) — 0.52, (j) — 0.55 mm for 8 W/cm², respectively. The black contour indicates the region within which the thermal dose exceeded its threshold value after the sample cooled down. Each spatial temperature distribution shows the end time of heating, the achieved thermal ablation rate, and the value of the destroyed volume.

Download (536KB)
4. Fig. 3. Spatial temperature distributions at the moment of heating completion t (a) − during shock-wave irradiation in the saturation mode (I₀ = 15 W/cm²) and (b) — in the mode of formation of a developed rupture (I₀ = 8 W/cm²) along a discrete trajectory limited by an external contour in the form of a square with a side of 7 mm, with an optimal interfocal step s (0.6 mm for 15 W/cm² and 0.5 mm for 8 W/cm²). The black contour indicates the region within which the thermal dose exceeded its threshold value after cooling of the sample. The time of heating completion, the achieved thermal ablation rate and the value of the destroyed volume are shown on each spatial temperature distribution.

Download (229KB)
5. Fig. 4. Spatial temperature distributions at the end of heating t (a) — during shock wave irradiation of the liver sample in the saturation mode (I₀ = 15 W/cm²) and (b) — in the developed rupture formation mode (I₀ = 8 W/cm²) along a three-layer trajectory. The distance between adjacent layers was 5 mm, irradiation began with the layer farthest from the emitter. The black contour indicates the region within which the thermal dose exceeded its threshold value after the sample cooled. The top row shows the distributions in the focal plane for each of the layers, and the bottom row — the distribution in the axial plane. The distributions indicate the interfocal steps s in each layer, the irradiation duration t, the achieved thermal ablation rates and the volumes of the resulting destruction.

Download (319KB)

Copyright (c) 2024 The Russian Academy of Sciences