Atomic Sodium Sonoluminescence Features During Bubble Collapse in a Cavitation Cloud by Time-Correlated Single Photon Counting

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The pulse width of multibubble sonoluminescence flashes in an aqueous NaCl solution was measured by a correlation method for the spectral range of 300–800 nm. The flash pulse width had a maximum value of 21 ns in the spectral region adjacent immediately to the Na D-line peak (589 nm) and decreased to 2 ns with distance from the line peak. The measured dependence of the flash pulse width on the wavelength agreed with the dynamic Na line shape model proposed by us earlier, where the spectral line width and shift were governed by a fast change in the emitting medium density during bubble collapse. Using the correlation method, the sequence of metal and continuum flashes was determined to measure the relative delay between them. The results showed that Na emission takes a longer time as compared to continuum emission and occurred almost symmetrically in time around a continuum flash with a vanishingly small delay of 0.21 ns after the continuum flash. Using the same method for a CeCl3 solution, a cerium line flash (350 nm) was revealed to occur after a continuum flash with a delay of 31 ns close to the Ce emission lifetime of 33 ns to be indicative of essential distinction between the mechanisms of Na and Ce emission under multibubble sonoluminescence.

Texto integral

Acesso é fechado

Sobre autores

M. Kazachek

V.I. Ilyichev Pacific Oceanological Institute of Far East Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: tanya@poi.dvo.ru
Rússia, Vladivostok

T. Gordeychuk

V.I. Ilyichev Pacific Oceanological Institute of Far East Branch of the Russian Academy of Sciences

Email: tanya@poi.dvo.ru
Rússia, Vladivostok

Bibliografia

  1. Гордейчук Т. В., Казачек М. В. Время-коррелированный счет фотонов для оценки длительности вспышек Na и континуума в спектрах многопузырьковой сонолюминесценции // Опт. и спектр. 2020. Т. 128. № 10. С. 1492−1500.
  2. Ko I., Kwak H.-Y. Measurement of pulse width from a bubble cloud under multibubble sonoluminescence conditions // J. Phys. Soc. Japan. 2010. V. 79. № 12. P. 124406 (6).
  3. Казачек М. В., Гордейчук Т. В. Счетчик корреляций на базе осциллографа и компьютера // Приборы и техника эксперимента // ПТЭ. 2019. Т. 62. № 1. С. 28−29.
  4. Казачек М. В., Гордейчук Т. В. Применение корреляционного метода для определения количества вспыхивающих пузырьков и количества фотонов в вспышке при многопузырьковой сонолюминесценции // Письма в ЖТФ. 2020. Т. 46. № 6. С. 11−15.
  5. Казачек М. В. Математическая обработка импульсов для улучшения временных характеристик счетчика корреляций // ПТЭ. 2023. Т. 66. № 6. С. 176−180.
  6. Lepoint-Mullie F., Voglet N., Lepoint T., Avni R. Evidence for the emission of 'alkali-metal-noble-gas' van der Waals molecules from cavitation bubbles // Ultrason. Sonochem. 2001. V. 8. № 2. P. 151−158.
  7. Казачек М. В., Гордейчук Т. В. Ширина импульсов континуума в различных областях оптического спектра многопузырьковой сонолюминесценции корреляционным методом // Опт. и спектр. 2023. Т. 131. № 9. С. 1236−1240.
  8. Казачек М. В., Гордейчук Т. В. Одна простая модель формы D-линии Na в спектрах сонолюминесценции // Письма в ЖТФ. 2011. Т. 37. № 6. С. 39−48.
  9. Brenner M.P., Hilgenfeldt S., Lohse D. Single-bubble sonoluminescence // Rev. Mod. Phys. 2002. V. 74. P. 425−484.
  10. Шарипов Г. Л., Гареев Б. М., Абдрахманов А. М. Однопузырьковая сонолюминесценция водных растворов хлоридов лантанидов и модели сонохимии нелетучих солей металлов // Письма в ЖЭТФ. 2010. Т. 91. № 11. С. 634−638.
  11. Казачек М. В., Гордейчук Т. В. Определение времени жизни люминесценции Ce3+ методом время-коррелированного счета фотонов при сонолюминесценции водного раствора CeCl3 // Опт. и спектр. 2021. Т. 129. № 9. С. 1152−1155.
  12. Xu H., Eddingsaas N.C., Suslick K.S. Spatial separation of cavitating bubble populations: the nanodroplet injection model // J. Am. Chem. Soc. 2009. V. 131. P. 6060−6061.
  13. Sunartio D., Yasui K., Tuziuti T., Kozuka T., Iida Y., Ashokkumar M., Grieser F. Correlation between Na* emission and “chemically active” acoustic cavitation bubbles // Chem. Phys. Chem. 2007. V. 8. № 16. P. 2331−2335.
  14. Кондратьев В. Н. Свободный гидроксил: монография. М: Государственное объединенное научно-техническое издательство. Редакция химической литературы, 1939. 138 c.
  15. Margulis M. A., Margulis I. M. Contemporary review on nature of sonoluminescence and sonochemical reactions // Ultrason. Sonochem. 2002. V. 9. № 1. P. 1−10.
  16. Борисенок В. А. Сонолюминесценция: эксперименты и модели (обзор) // Акуст. журн. 2015. Т. 61. № 3. С. 333−360.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. SL spectrum of 3 M NaCl aqueous solution (bold curve) and flash duration measured using 10 different light filters. The wavelength range where the transmittance of the light filter is more than 50% of the maximum corresponds to the position of the segment (1-10) on the wavelength axis, the flash duration in the corresponding range corresponds to the position of the segment on the W axis. The filter transmission spectra are not shown to avoid cluttering the figure. The SL spectrum is cropped on the intensity scale for clarity. The fragment of the SL spectrum of aqueous solution of 3 M KCl (thin curve) is used in calculations as the continuum spectrum from 500 to 700 nm

Baixar (71KB)
3. Fig. 2. Dependence of the flash duration W on the weighted average fraction s of the Na line brightness for light filters cutting out both the continuum and part of the Na line from the SL spectral range in the spectra of aqueous solutions of 3 M and 4 M NaCl. Measurements with a narrow-band filter and monochromator near the centre of the Na line (circles), with filters on the short-wavelength side of the Na line (triangles), and with filters on the long-wavelength side (squares). Inset: model course of the dependence of W on the fraction of the broad component sg in the sum of two Gaussian curves

Baixar (68KB)
4. Fig. 3. SL spectra of water (1), 0.1 M CeCl3 (2), luminescence of 0.1 M CeCl3 (3) and transmission spectra of violet (4) and yellow (5) light filters

Baixar (91KB)
5. Fig. 4. (a) - Photon correlation spectra (crosses, circles) and their two-Gaussian approximations (curves) of SL of 0.1 M CeCl3 solution and (b) - photon correlation spectra of SL of 2 M NaCl solution. Continuum-metal correlations - circles, bold curve; metal-continuum correlations - crosses, thin curve

Baixar (136KB)
6. Fig. 5. Detailed spectra of photon correlations and their two-Gaussian SL approximations of 2 M NaCl solution. Continuum-metal (circles, bold curve) and metal-continuum correlations (crosses, thin curve)

Baixar (77KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024