Characteristics of Cold Atmospheric Plasma Jet when Excited by Sinusoidal and Positive Pulse Voltages for Medical Applications
- 作者: Schweigert I.V.1, Zakrevskyc D.E.2,3,1, Milakhina E.V.2,1, Gugin P.P.3,1, Birykov M.M.4,5,1, Patrakova E.A.4, Troitskaya O.S.4,1, Koval O.A.6,7
-
隶属关系:
- Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences
- Novosibirsk State Technical University
- Rzhanov Institute of Semiconductor Physics, SB Russian Academy of Sciences
- Institute of Chemical Biology and Fundamental Medicine, SB Russian Academy of Sciences
- Novosibirsk State University
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
- 期: 卷 49, 编号 5 (2023)
- 页面: 447-453
- 栏目: LOW TEMPERATURE PLASMA
- URL: https://medjrf.com/0367-2921/article/view/668532
- DOI: https://doi.org/10.31857/S0367292122601400
- EDN: https://elibrary.ru/VEFPZI
- ID: 668532
如何引用文章
全文:
详细
Low-temperature plasma jets at atmospheric pressure generated by sinusoidal and positive pulsed voltages interact differently with the treated surface. In the experiment and in numerical simulations, we compare the operating modes of helium plasma jets for these types of operating voltages. The discharge current on the treated surface over time and the surface heating are studied for different discharge parameters acceptable for anticancer therapy. The intensity of the emission spectrum is analyzed to improve the effectiveness of the plasma jet. Surface heating is controlled in order to meet the safety conditions of plasma exposure to biological objects. For the case of pulsed voltage the effect of voltage pulse duration on the intensity of plasma-surface interaction is discussed. The results on cancer cells A549 and MCF-7 demonstrate the high efficiency of the cold plasma jet generated at found optimal modes.
作者简介
I. Schweigert
Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences
Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk
D. Zakrevskyc
Novosibirsk State Technical University; Rzhanov Institute of Semiconductor Physics, SB Russian Academy of Sciences; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences
Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk
E. Milakhina
Novosibirsk State Technical University; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences
Email: ivschweigert@gmail.com
Novosibirsk, Russia; Novosibirsk, Russia; Novosibirsk, Russia
P. Gugin
Rzhanov Institute of Semiconductor Physics, SB Russian Academy of Sciences; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences
Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk
M. Birykov
Institute of Chemical Biology and Fundamental Medicine, SB Russian Academy of Sciences; Novosibirsk State University; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences
Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk
E. Patrakova
Institute of Chemical Biology and Fundamental Medicine, SB Russian Academy of Sciences
Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk
O. Troitskaya
Institute of Chemical Biology and Fundamental Medicine, SB Russian Academy of Sciences; Khristianovich Institute of Theoretical and Applied Mechanics, SB Russian Academy of Sciences
Email: biryukov.mm@ya.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk
O. Koval
Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: ivschweigert@gmail.com
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia
参考
- Chatraie M., Torkaman G., Khani M., Salehi H., Sho-kri B. // Sci. Reps. 2018. V. 8. P. 5621.
- Kos S., Blagus T., Cemazar M., Filipic G., Sersa G., Cvelbar U. // PLoS ONE. 2017. V. 12 (4). P. e0174966.
- Гугин П., Закревский Д., Милахина Е. // Письма ЖТФ. 2021. Т. 47. С. 22.
- Slikboer E., Viegas P., Bonaventura Z., Garcia-Caurel E., Sobota A., Bourdon A., Guaitella O. // Plasma Sources Sci. Technol. 2019. V. 28. P. 095016.
- Viegas P., Hofmans M., van Rooij O., Obrusnk A., Klarenaar B.L.M., Bonaventura Z., Guaitella O., Sobota A., Bourdon A. // Plasma Sources Sci. Technol. 2020. V. 29. P. 095011.
- Schweigert I.V., Zakrevsky Dm.E., Gugin P.P., Yelak E.V., Golubitskaya E.A., Troitskaya O.S., Koval O.A. // Appl. Sci. 2019. V. 9. P. 4528.
- Schweigert I.V., Alexandrov A.L., Zakrevsky Dm.E. // Plasma Sources Sci. Technol. 2020. V. 29. P. 12LT02.
- Schweigert I., Vagapov S., Lin L., Keidar M. // J. Phys D Appl. Phys. 2019. V. 52 (29). P. 295201.
- Koval O., Kochneva G., Tkachenko A., Troitskaya O., Sivolobova G., Grazhdantseva A., Nushtaeva A., Kuligi-na E., Richter V. // BioMed. Res. Int. 2017. V. 2017. P. 1.
补充文件
