Numerical study of structural parameters of dust particle chains of different lengths

封面

如何引用文章

全文:

详细

The results of a numerical study of the configuration of chains of dust particles levitating in a gasdischarge plasma are presented. The studies have been carried out using an iterative model that self-consistently describes the motion of ions and dust particles under the action of an external electric field, an electric field (Coulomb) of each charged dust particle, a field of the plasma space charge (ions and electrons), which screens the charges of dust particles, and gravity for dust particles. The structural parameters of the chains of dust particles were calculated for different numbers of particles in them. It was found that when new particles are added to the chain, the center of the chain rises above the lower electrode. This is due to both a decrease in the charges of the lower dust particles due to the focusing of positively charged ions behind the upper particle, and a significant decrease in the ion drag force on the lower particles of the chain as a result of structural rearrangement of the entire chain. It is shown that the reduced charge of the chains decreases, and the reduced length of the chains has a maximum depending on the number of particles.

作者简介

M. Sal’nikov

Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: salnikovitsbras@gmail.com
俄罗斯联邦, Novosibirsk

A. Fedoseev

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: salnikovitsbras@gmail.com
俄罗斯联邦, Moscow

M. Vasil’ev

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: salnikovitsbras@gmail.com
俄罗斯联邦, Moscow

O. Petrov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: salnikovitsbras@gmail.com
俄罗斯联邦, Moscow

参考

  1. Shukla P.K. // Phys. Plasmas. 2001. V. 8. P. 1791.
  2. Merlino R.L., Goree J.A. // Phys. Today. 2004. V. 57. P. 32.
  3. Fortov V.E., Ivlev A. V., Khrapak S.A., Khrapak A.G., Morfill G.E. // Phys. Rep. 2005. V. 421. P. 1.
  4. Ishihara O. // J. Phys. D. 2007. V. 40. P. 121.
  5. Ludwig P., Thomsen H., Balzer K., Filinov A., Bonitz M. // Plasma Phys. Controlled Fusion, 2010. V. 52. P. 124013.
  6. Selwyn G.S. // Plasma Sources Sci. Technology. 1994. V. 3. P. 340.
  7. Melzer A., Trottenberg T., Piel A. // Phys. Lett. A. 1994. V. 191. P. 301.
  8. Chu J.H., Lin I. // Phys. Rev. Lett., 1994. V. 72. P. 4009.
  9. Жаховский В.В., Молотков В.И., Нефедов А.П., Торчинский В.М., Храпак А.Г., Фортов В.Е. // Письма ЖЭТФ. 1997. Т. 66. С. 392.
  10. Petrov O.F., Statsenko K.B., Vasiliev M.M. // Sci. Rep. 2022. V. 12. P. 8618.
  11. Boltnev R.E., VasilievM.M., Petrov O.F. // Sci. Rep. 2019. V. 9. P. 3261.
  12. Petrov O.F., Boltnev R.E., VasilievM.M. // Sci. Rep. 2022. V. 12. P. 6085.
  13. Karasev V. Yu., DzlievaE. S., Eikhval’d A.I. // Geometrical and Applied Optics. 2006. V. 101. P. 493.
  14. Carmona-Reyes J., Schmoke J., CookM., Kong J., Hyde T.W. // 16th IEEE Internat. Pulsed Power Confer., Albuquerque, NM, USA, 2007. P. 1581.
  15. Hartmann P., Matthews L., Kostadinova E., Hyde T., RosenbergM. // APS Annual Gaseous Electronics Meeting Abstracts, MW1.009
  16. Takahashi K., Oishi T., Shimomai K.-I., Hayashi Y., Nishino S. // Phys. Rev. E. 1998. V. 58 P. 7805.
  17. Hyde T.W., Kong J., Matthews L.S. // Phys. Rev. E. V. 2013. V. 87. P. 053106.
  18. Polyakov D.N., Vasilyak L.M., Shumova V.V. // Surface Engineering and Applied Electrochemistry. 2015. V. 51. P. 143.
  19. Yaroshenko, V., Pustylnik, M. // Molecules. V. 26, 308, 2021.
  20. Ivlev A.V., Thoma M.H., Rath C., Joyce G., Morfill G.E. // Phys. Rev. Lett. 2011. V. 106. P. 155001.
  21. FedoseevA.V., Litvinenko V.V., VasilievaE.V., Vasiliev M.M., Petrov O.F. // Sci. Rep. 2024. V. 14 . P. 13252.
  22. Yousef R., Chen M., Matthews L.S., Hyde T.W. // arXiv Preprint. 2016. 1607.03177.
  23. Miloch W.J., BlockD. // Phys. Plasmas. 2012. V. 19. P. 123703.
  24. Block D., Miloch J.W. // Plasma Phys. Controlled Fusion. 2015. V. 57. P. 014019.
  25. Hutchinson I.H. // Phys. Plasmas. 2011. V. 18. P. 032111.
  26. Matthews L.S., Sanford D.L., Kostadinova E.G., Ashrafi K.S., Guay E., Hyde T.W. // Phys. Plasmas. 2020. V. 27. P. 023703.
  27. Vermillion K., Sanford D., Matthews L., Hartmann P., Rosenberg M., Kostadinova E., Carmona-Reyes J., Hyde T., Lipaev A.M., Usachev A.D., Zobnin A.V., Petrov O.F., Thoma M.H., PustylnikM.Y., ThomasH.M., Ovchinin A. // Phys. Plasmas. 2022. V. 29. P. 023701.
  28. Fedoseev A.V., Salnikov M.V., Vasiliev M.M., Petrov O.F. // Phys. Rev. E. 2022. V. 106. P. 0252042022.
  29. Fedoseev A.V., Salnikov M.V., Vasiliev M.M., Petrov O.F. // Phys. Plasmas. 2024. V. 31. P. 063703.
  30. Sukhinin G.I., Fedoseev A.V., Salnikov M.V., Rostom A., Vasiliev M.M., Petrov O.F. // Phys. Rev. E. 2017. V. 95. P. 063207.
  31. Fortov V.E., Khrapak A.G., Khrapak S.A., Molotkov V.I., Petrov O.F. // Physics-Uspekhi. 2004. V. 47. P. 447.
  32. Lipaev A.M., Molotkov V.I., Nefedov A.P., Petrov O.F., Torchinskii V.M., Fortov V.E., Khrapak A.G., Khrapak S.A. // J. Exp. Theor. Phys. 1997. V. 85. P. 1110.
  33. Павлов С.И., Дзлиева Е.С., Дьячков Л.Г., Новиков Л.А., Балабас М.В., Карасев В.Ю. // Физика плазмы. 2023. Т. 49. С. 995.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024