Electrochemical properties of superionic conductors CsAg4Br3-хI2+х
- 作者: Glukhov A.A.1, Reznitskikh O.G.2, Yaroslavtseva T.V.2, Urusova N.V.2, Ukshe A.E.1, Dobrovolsky Y.A.1, Bushkova O.V.1
-
隶属关系:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
- Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences
- 期: 卷 60, 编号 2 (2024)
- 页面: 146-153
- 栏目: Articles
- URL: https://medjrf.com/0424-8570/article/view/671629
- DOI: https://doi.org/10.31857/S0424857024020046
- EDN: https://elibrary.ru/RFKQOY
- ID: 671629
如何引用文章
详细
CsAg4Br3–хI2+х solid solutions with x=0.38; 0.50; 0.63 were prepared by solid-phase synthesis; the single-phase of the products was confirmed by X-ray diffraction and differential scanning calorimetry. Studies of the electrical transport characteristics of CsAg4Br3–хI2+х included measurements of the ionic conductivity by the four-probe method in the range of –50…+120°C and an evaluation of the electronic component of the conductivity by the Hebb-Wagner method. It was shown that the ionic conductivity of CsAg4Br3–хI2+х solid solutions in the studied range of compositions is practically independent of x and is very close to that of the well-known superionic conductor RbAg4I5. The activation energy of conduction for all studied compounds is about 10 kJ mol–1. The oxidation potential determined by the stepwise polarization technique for CsAg4Br3–хI2+х solid solutions is noticeably higher than that of RbAg4I5, and is in the range of 0.75–0.78 V (vs. Ag0/Ag+). The high electrochemical characteristics of CsAg4Br3–хI2+х (0.38≤x≤0.63) and the absence of polymorphic transitions in the studied range from –160°C to the melting point (175 – 178°С) make these materials promising for use in electrochemical devices based on solid electrolytes, especially for low temperature applications.
全文:

作者简介
A. Glukhov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: 0511alex@mail.ru
俄罗斯联邦, Chernogolovka
O. Reznitskikh
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences
Email: 0511alex@mail.ru
俄罗斯联邦, Yekaterinburg
T. Yaroslavtseva
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences
Email: tanya_yaroslavtseva@mail.ru
俄罗斯联邦, Yekaterinburg
N. Urusova
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences
Email: 0511alex@mail.ru
俄罗斯联邦, Yekaterinburg
A. Ukshe
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: 0511alex@mail.ru
俄罗斯联邦, Chernogolovka
Yu. Dobrovolsky
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: 0511alex@mail.ru
俄罗斯联邦, Chernogolovka
O. Bushkova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: 0511alex@mail.ru
俄罗斯联邦, Chernogolovka
参考
- Geller, S., Crystal structure of the solid electrolyte, , Science, 1967, vol. 157, no. 3786, p. 310. doi: 10.1126/science.157.3786.310
- Topol, L.E. and Owens, B.B., Thermodynamic studies in the high-conducting solid systems rubidium iodide-silver iodide, potassium iodide-silver iodide, and ammonium iodide-silver iodide, J. Phys. Chem., 1968, vol. 72, no. 6, p. 2106. https://doi.org/10.1021/j100852a038
- Bradley, J.N. and Greene, P.D., Solids with high ionic conductivity in Group 1 halide systems, Trans. Faraday Soc., 1967, vol. 63, p. 424. https://doi.org/10.1039/TF9676300424
- Owens, B.B. and Argue, G.R., High-conductivity solid electrolytes: , Science, 1967, vol. 157, p. 308. https://doi.org/10.1126/science.157.3786.308
- Иванов-Шиц, А.К., Мурин, И.В. Ионика твердого тела, в 2 т. Т.I, Cпб.: Изд-во С.- Петерб. ун-та, 2000. 616 с. [Ivanov-Shits, A.K. and Murin, I.V. Solid state Ionics, in 2 vols. (in Russian), vol. I, St. Petersburg: Publ. House of St. Petersburg Univer., 2000. 616 p.]
- Деспотули, А.Л., Личкова, Н.В., Миненкова, Н.А., Носенко, С.В. Получение и некоторые свойства тонких пленок твердых электролитов . Электрохимия. 1990. Т. 26. С. 1524. [Despotuli, A.L., Lichkova, H.V., Minenkova, H.A., and Nosenko, S.V., Preparation and Certain Properties of Thin Film Solid Electrolytes, Elektrokhimiya (in Russian), 1990, vol. 26, p. 1524.]
- Личкова, Н.В., Деспотули, А.Л., Загороднев, В.Н., Миненкова, Н.А., Шахлевич, К.В. Ионная проводимость твердых электролитов в двух- и трехкомпонентых стеклообразующих системах AgX-CsX (X=Cl, Br, I). Электрохимия. 1989. Т. 25. С. 1636. [Lichkova, H.V., Despotuli, A.L., Zagorodnev, V.N., Minenkova, H.A., and Shakhlevich, K.V., Ionic conductivity of solid electrolytes in two- and three-component glass-forming systems AgX-CsX (X=Cl, Br, I), Elektrokhimiya (in Russian), 1989, vol. 25, p. 1636.]
- Деспотули, А.Л., Загороднев, В.Н., Личкова, Н.В., Миненкова, Н.А. Новые высокопроводящие твердые электролиты: 0,25≤х≤1. Физика твердого тела. 1989. Т. 31. № 9. С. 242. [Despotuli, A.L., Zagorodnev, V.N., Lichkova, N.V., and Minenkova, N.A., New high conductive (0.25 < x < 1) solid electrolytes, Fiz. Tverd. Tela (Leningrad) (in Russian), 1989, vol. 31, no. 9, p. 242.]
- Lichkova, N.V., Despotuli, A.L., Zagorodnev, V.N., and Minenkova, N.A., Superionic glasses based on silver and cesium monohalides, Mater. Sci. Forum, 1991, vol. 67-68, p. 601. https://doi.org/10.4028/www.scientific.net/MSF.67-68.601
- Личкова, Н.В., Деспотули, А.Л., Загороднев, В.Н., Миненкова, Н.А. Твердый электролит, Пат. RU 1 697 573 С. H01M 6/18 (1995.01) (Россия). 1989. [Lichkova, N.V., Despotuli, A.L., Zagorodnev, V.N., and Minenkova, N.A. Solid electrolyte, Patent RU 1 697 573 P. H01M 6/18 (1995.01) (Russia), 1989.]
- Деспотули, А.Л., Личкова, Н.В. Ионистор, Пат. RU 2 012 105 C1, МПК H01M 6/18. Россия, 1991. [Despotuli, A.L. and Lichkova, N.V., Ionistor, Patent RU 2,012 105 C1, IPC H01M 6/18 (Russia), 1991.]
- Толстогузов, А.Б., Белых, С.Ф., Гололобов, Г.П., Гуров, В.С., Гусев, С.И., Суворов, Д.В., Таганов, А.И., Fu, D.J., Ai, Z., Liu, C.S. Ионные источники на твердых электролитах для аэрокосмического применения и ионно-лучевых технологий (обзор). Приборы и техника эксперимента. 2018. № 2. С. 5. [Tolstoguzov, A.B., Belykh, S.F., Gololobov, G.P., Gurov, V.S., Gusev, S.I., Suvorov, D.V., Taganov, A.I., Fud, D.J., Ai, Z., and Liu, C.S., Ion-beam sources based on solid electrolytes for aerospace applications and ion-beam technologies (Review), Instruments and Experimental Techniques, 2018, vol. 61, no. 2, p. 159.] https://doi.org/10.7868/S0032816218020106
- Деспотули, А.Л., Андреева, А.В. Наноионика: новые материалы и суперконденсаторы. Рос. нанотехнологии. 2010. Т. 5. № 7-8. С. 89. [Despotuli, A.L. and Andreeva, A.V., Nanoionics: New Materials and Supercapacitors, Nanotechnologies in Russia, 2010, vol. 5, no. 7–8, p. 506.] doi: 10.1134/S1995078010070116
- Owens, B.B., Solid state electrolytes: overview of materials and applications during the last third of the Twentieth Century, J. Power Sources, 2000, vol. 90, p. 2. https://doi.org/10.1016/S0378-7753(00)00436-5
- Palakkathodi Kammampata, S. and Thangadurai, V., Cruising in ceramics – discovering new structures for all-solid-state batteries – fundamentals, materials, and performances, Ionics, 2018, vol. 24, no. 3, p. 639. https://doi.org/10.1007/s11581-017-2372-7
- Glukhov, A.A., Belmesov, A.A., Nechaev, G.V., Ukshe, A.E., Reznitskikh, O.G., Bukun, N.G., Shmygleva, L.V., and Dobrovolsky, Y.A., Anode material for all-solid-state battery based on solid electrolyte : Theory and experiment, Mater. Sci. and Engineering: B, 2022, vol. 278, art. 115617. https://doi.org/10.1016/j.mseb.2022.115617
- Резницких, О.Г., Ярославцева, Т.В., Глухов, А.А., Попов, Н.А., Урусова, Н.В., Букун, Н.Г., Добровольский, Ю.А., Бушкова О.В. Синтез и сравнительное исследование электрохимических характеристик твердых электролитов и . Электрохимия. 2022. Т. 58. С. 676. doi: 10.31857/S0424857022100103. [Reznitskikh, O.G., Yaroslavtseva, T.V., Glukhov, A.A., Popov, N.A., Urusova, N.V., Bukun, N.G., Dobrovolsky, Yu. A., and Bushkova, O.V., Synthesis and comparative investigation of the electrochemical characteristics of and solid electrolytes, Russ. J. Electrochem., 2022, vol. 58, p. 927.] https://doi.org/10.1134/S102319352210010X
- Rodríguez-Carvajal, J., Recent advances in magnetic structure determination by neutron powder diffraction, Physica B, 1993, vol. 192, no. 1–2, p. 55. https://doi.org/10.1016/0921-4526(93)90108-I
- Valverde, N., Thermodynamic stabilization of the solid electrolyte , J. Electrochem. Soc.: Solid State Sci. and Technol., 1980, vol. 127, no. 11, p. 2425. https://doi.org/10.1149/1.2129487
- Бушкова, О.В., Резницких, О.Г., Ярославцева, Т.В., Попов, Н.А., Непомилуев, А.М., Новиков, Д.В., Добровольский, Ю.А. Способ получения твердого электролита. Пат. 2720349 (Россия), 2019. [Bushkova, O.V., Reznitskikh, O.G., Yaroslavtseva, T.V., Popov, N.A., Nepomiluev, A.M., Novikov, D.V., and Dobrovolsky, Yu.A., Method of obtaining a solid electrolyte, Patent 2720349 (Russia), 2019.]
- Shahi, K. and Chandra, S., Thermoelectric power of the superionic conductors (M= K and Rb), J. Phys. C: Solid State Phys., 1976, vol. 9, no. 16, p. 3105. https://doi.org/10.1088/0022-3719/9/16/016
- Scrosati, B., Germano, G., and Pistoia, G., Electrochemical properties of solid electrolyte: I. Conductivity studies. J. Electrochem. Soc., 1971, vol. 118, no. 1, p. 86. https://doi.org/10.1149/1.2407958
- Укше, Е.А., Букун, Н.Г. Твердые электролиты, М.: Наука, 1977. 176 с. [Ukshe, E.A. and Bukun, N.G., Solid Electrolytes, Moscow: Nauka, 1977. 176 p.]
- Zolotoyabko, E.V. and Ovanesyan, N.S., Moessbauer diffraction in the superionic conductor , Phys. Status Solidi. B, B. Research., 1985, vol. 129, no. 2, p. 587. https://doi.org/10.1002/pssb.2221290216
补充文件
