Influence of Soot Particles on the Gas-Phase Methane Conversion into Synthesis-Gas. The Role of H2O and CO2 Additives

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of the formation of microheterogeneous soot particles on the gas-phase conversion of rich mixtures of methane with oxygen into synthesis gas in the temperature range from 1500 to 1800 K under the conditions of an adiabatic reactor was studied by kinetic modeling. The effect of CO2 and H2O additives on this process was studied. The appearance of soot particles is observed in rich mixtures, starting from the fuel excess factor ϕ = 3.33. At relatively low temperatures ~1500 K, a small amount of microheterogeneous soot particles is formed, which do not significantly affect the other components of the reacting system. A noticeable effect of soot particles at this temperature is observed at a higher value of ϕ = 8.0. This is most clearly manifested in the temperature profile of the process, in which, with the addition of water, two maxima are observed at times of the order of 0.01 and 0.1 s. In the case of CO2 additions, the second maximum on the temperature profile is almost not pronounced. A complex temperature profile leads to the appearance of the second maximum concentration of OH hydroxyl radicals at times of ~0.1 s. The addition of H2O and CO2 makes it possible to vary the H2/CO ratio in the synthesis gas over a wide range, which is necessary for the synthesis of various products. Since the added CO2 under these conditions is actually involved in the chemical process of obtaining synthesis gas, its partial recirculation from the conversion products makes it possible to reduce its emission during the production of synthesis gas.

Sobre autores

A. Akhunyanov

Semenov Federal Research Center for Chemical Physics
of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: shocktube@yandex.ru
Russia, 119991, Moscow, 4, Kosygin Str.

P. Vlasov

Semenov Federal Research Center for Chemical Physics
of the Russian Academy of Sciences; National Research Nuclear University MEPhI

Email: shocktube@yandex.ru
Russia, 119991, Moscow, 4, Kosygin Str.; Russia, 115409, Moscow, 31, Kashirskoe Sh.

V. Smirnov

Semenov Federal Research Center for Chemical Physics
of the Russian Academy of Sciences

Email: shocktube@yandex.ru
Russia, 119991, Moscow, 4, Kosygin Str.

A. Arutyunov

Semenov Federal Research Center for Chemical Physics
of the Russian Academy of Sciences

Email: shocktube@yandex.ru
Russia, 119991, Moscow, 4, Kosygin Str.

D. Mikhailov

Semenov Federal Research Center for Chemical Physics
of the Russian Academy of Sciences

Email: shocktube@yandex.ru
Russia, 119991, Moscow, 4, Kosygin Str.

V. Arutyunov

Semenov Federal Research Center for Chemical Physics
of the Russian Academy of Sciences; Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry,
Russian Academy of Sciences

Email: shocktube@yandex.ru
Russia, 119991, Moscow, 4, Kosygin Str.; Russia, 142432, Chernogolovka, 1, Academician Semenov Ave., Moscow region

Bibliografia

  1. Арутюнов В.С., Голубева И.А., Елисеев О.Л., Жагфаров Ф.Г. Технология переработки углеводородных газов. Учебник для вузов. Москва: Юрайт. 2020. 723 с. ISBN 978-5-534-12398-2
  2. Арутюнов В.С. // Нефтехимия. 2022. Т. 62. № 4. С. 459. https://doi.org/10.1134/S0965544122040065
  3. Nikitin A., Ozersky A., Savchenko V., Sedov I., Shmelev V., Arutyunov V. // Chem. Eng. J. 2019. V. 377. Article 120883. https://doi.org/10.1016/j.cej.2019.01.162
  4. Алдошин С.М., Арутюнов В.С., Савченко В.И., Седов И.В., Никитин А.В., Фокин И.Г. // Химическая физика. 2021. Т. 40. № 5. С. 46. https://doi.org/10.31857/S0207401X21050034
  5. Savchenko V.I., Zimin Ya.S., Nikitin A.V., Sedov I.V., Arutyunov V.S. // J. CO2 Utilization. 2021. V. 47. 101490. https://doi.org/10.1016/j.jcou.2021.101490
  6. Savchenko V.I., Nikitin A.V., Zimin Ya.S., Ozerskii A.V., Sedov I.V., Arutyunov V.S. // Chem. Eng. Res. Des. 2021. V. 175. P. 250. https://doi.org/10.1016/j.cherd.2021.09.009
  7. Савченко В.И., Зимин Я.С., Бузилло Э., Никитин А.В., Седов И.В., Арутюнов В.С. // Нефтехимия. 2022. Т. 62. № 3. С. 375. https://doi.org/10.1134/S0965544122050048
  8. Агафонов Г.Л., Билера И.В., Власов П.А., Колбановский Ю.А., Смирнов В.Н., Тереза А.М. // Кинетика и катализ. 2015. Т. 56. № 1. С. 15. https://doi.org/10.7868/S0453881115010013
  9. Ахуньянов А.Р., Арутюнов А.В., Власов П.А., Смирнов В.Н., Арутюнов В.С. // Кинетика и катализ. 2023. Т. 64. № 2. С. 153. https://doi.org/10.31857/S0453881123020016
  10. Frenklach M. // Chem. Eng. Sci. 1985. V. 40. P. 1843.
  11. Frenklach M., Taki S., Matula R.A. // Combust. Flame. 1983. V. 49. P. 275.
  12. Appel J., Bockhorn H., Frenklach M. // Combust. Flame. 2000. V. 121. № 1–2. P. 122.
  13. Wang H., Frenklach M. // Combust. Flame. 1997. V. 110. № 1–2. P. 173.
  14. Frenklach M., Wang H. Detailed Mechanism and Modeling of Soot Particle Formation / Soot Formation in Combustion: Mechanisms and Models. Ed. H. Bockhorn, Springer Series in Chemical Physics, Berlin: Springer-Verlag, 1994. V. 59. P. 162.
  15. Richter H., Granata S., Green W.H., Howard J.B. // Proc. Combust. Inst. 2005. V. 30. № 1. P. 1397.
  16. Deuflhard P., Wulkow M. // Impact Comput. Sci. Eng. 1989. V. 1. P. 269.
  17. Wulkow M. // Macromol. Theory Simul. 1996. V. 5. P. 393.
  18. Wang H., You X., Joshi A.V., Davis S.G., Laskin A., Egolfopoulos F., Law C.K. USC Mech Version II. High temperature combustion reaction model of H2/CO/C1–C4 compounds. http://ignis.usc.edu/USC-MechII.htm
  19. Агафонов Г.Л., Билера И.В., Власов П.А., Жильцова И.В., Колбановский Ю.А., Смирнов В.Н., Тереза А.М. // Кинетика и катализ. 2016. Т. 57. № 5. С. 571.
  20. Skjøth-Rasmussen M.S., Glarborg P., Østberg M., Johannessen J.T., Livbjerg H., Jensen A.D., Christensen T.S. // Combust. Flame. 2004. V. 136. P. 91.
  21. Richter H., Granata S., Green W.H., Howard J.B. // P. Combust. Inst. 2005. V. 30. P. 1397.
  22. Frenklach M., Warnatz J. // Combust. Sci. Technol. 1987. V. 51. P. 265.
  23. Wang H., Dames E., Sirjean B., Sheen D.A., Tangko R., Violi A. A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures. JetSurF Version 2.0, 2010.http://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF2.0/index.htm
  24. Correa C., Niemann H., Schramm B., Warnatz J. // P. Combust. Inst. 2000. V. 28. P. 1607.
  25. Hansen N., Klippenstein S.J., Westmoreland P.R., Kasper T., Kohse-Hoinghaus K., Wang J., Cool T.A. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 366.
  26. Agafonov G.L., Mikhailov D.I., Smirnov V.N., Tereza A.M., Vlasov P.A., Zhiltsova I.V. // Combust. Sci. Technol. 2016. V. 188. № 11–12. P. 1815. https://doi.org/10.1080/00102202.2016.1211861
  27. Vlasov P.A., Zhiltsova I.V., Smirnov V.N., Tereza A.M., Agafonov G.L., Mikhailov D.I. // Combust. Sci. Technol. 2018. V. 190. № 1. P. 57. https://doi.org/10.1080/00102202.2017.1374954
  28. Власов П.А., Ахуньянов А.Р., Смирнов В.Н. // Кинетика и катализ. 2022. Т. 63. № 2. С. 160. https://doi.org/10.31857/S0453881122020149
  29. Agafonov G.L., Borisov A.A., Smirnov V.N., Troshin K.Ya., Vlasov P.A., Warnatz J. // Combust. Sci. Technol. 2008. V. 180. № 10. P. 1876. https://doi.org/10.1080/00102200802261423
  30. Agafonov G.L., Smirnov V.N., Vlasov P.A. // Combust. Sci. Technol. 2010. V. 182. № 11. P. 1645. https://doi.org/10.1080/00102202.2010.497331
  31. Agafonov G.L., Naydenova I., Vlasov P.A., Warnatz J. // P. Combust. Inst. 2007. V. 31. P. 575. https://doi.org/10.1016/j.proci.2006.07.191
  32. Naydenova I., Nullmeier M., Warnatz J., Vlasov P.A. // Combust. Sci. Technol. 2004. V. 176. P. 1667. https://doi.org/10.1080/00102200490487544
  33. Vlasov P.A., Agafonov G.L., Mikhailov D.I., Smirnov V.N., Tereza A.M., Zhiltsova I.V., Sychev A.E., Shchukin A.S., Khmelenin D.N., Streletskii A.N., Borunova A.B., Stovbun S.V. // Combust. Sci. Technol. 2019. V. 191. № 2. P. 243. https://doi.org/10.1080/00102202.2018.1451995
  34. Vlasov P.A., Warnatz J. // P. Combust. Inst. 2002. V. 29. P. 2335.
  35. Agafonov G.L., Smirnov V.N., Vlasov P.A. // P. Combust. Inst. 2011. V. 33. P. 625. https://doi.org/10.1016/j.proci.2010.07.089
  36. Власов П.А., Варнатц Ю. // Химическая физика. 2004. Т. 23. № 10. С. 42.
  37. Власов П.А., Варнатц Ю., Найденова И. // Химическая физика. 2004. Т. 23. № 11. С. 36.
  38. Власов П.А., Смирнов В.Н., Тереза А.М., Агафонов Г.Л., Колбановский Ю.А., Билера И.В., Михайлов Д.И., Жильцова И.В. // Химическая физика. 2016. Т. 35. № 12. С. 35. https://doi.org/10.7868/S0207401X16120165
  39. Агафонов Г.Л., Билера И.В., Власов П.А., Колбановский Ю.А., Смирнов В.Н., Тереза А.М. // Химическая физика. 2016. Т. 35. № 8. С. 21. https://doi.org/10.7868/S0207401X16080033
  40. Агафонов Г.Л., Власов П.А., Смирнов В.Н. // Кинетика и Катализ. 2011. Т. 52. № 3. С. 368.
  41. Agafonov G.L., Smirnov V.N., Vlasov P.A. // Combust. Sci. Technol. 2012. V. 184. № 10–11. P. 1838. https://doi.org/10.1080/00102202.2012.690644

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (132KB)
3.

Baixar (320KB)
4.

Baixar (133KB)
5.

Baixar (254KB)
6.

Baixar (109KB)
7.

Baixar (201KB)
8.

Baixar (132KB)
9.

Baixar (228KB)
10.

Baixar (173KB)
11.

Baixar (212KB)
12.

Baixar (132KB)
13.

Baixar (157KB)
14.

Baixar (174KB)
15.

Baixar (129KB)