Investigation of kinetic mechanisms of photocatalytic hydrogen generation from formic aside using metal-ceramic composites under visible-light irradiation
- Autores: Skvortsova L.N.1, Artyukh I.A.1, Tatarinova T.V.1, Bolgaru K.A.2
-
Afiliações:
- National Research Tomsk State University
- Tomsk Scientific Center, Siberian Branch, Russian Academy of Sciences
- Edição: Volume 65, Nº 2 (2024)
- Páginas: 125-136
- Seção: ARTICLES
- URL: https://medjrf.com/0453-8811/article/view/660327
- DOI: https://doi.org/10.31857/S0453881124020039
- EDN: https://elibrary.ru/DXQWEP
- ID: 660327
Citar
Resumo
Processes of photocatalytic hydrogen generation from the formic acid water solution under vis-light irradiation with tantalum contained metal-ceramic silicon nitride-based composites were investigated depending on pH of the solution and hydrogen peroxide adding. These compounds were obtained by self-propagated high temperature (SHS) synthesis in the way of the ferrosilicoaluminum (FSA) and silicon-aluminum powders ignition in a nitrogen atmosphere with the tantalum addition. During the investigation it was found out that the reaction rate of the hydrogen production without hydrogen peroxide can be described within the Langmuir–Hinshelwood mechanism. There is the reaction mechanism changing simultaneously with a formic acid concentration increasing in the presence of H2O2. The most significant reaction rate of hydrogen production from HCOOH is observed with the Fe-contained composite synthesized from FSA in the solution system without H2O2 addition, the reaction turns of frequency (TOF) is 4.55 µmol/min.
Palavras-chave
Texto integral

Sobre autores
L. Skvortsova
National Research Tomsk State University
Autor responsável pela correspondência
Email: lnskvorcova@inbox.ru
Rússia, Lenin Ave., 36, Tomsk, 634050
I. Artyukh
National Research Tomsk State University
Email: lnskvorcova@inbox.ru
Rússia, Lenin Ave., 36, Tomsk, 634050
T. Tatarinova
National Research Tomsk State University
Email: lnskvorcova@inbox.ru
Rússia, Lenin Ave., 36, Tomsk, 634050
K. Bolgaru
Tomsk Scientific Center, Siberian Branch, Russian Academy of Sciences
Email: lnskvorcova@inbox.ru
Rússia, Akademichesky Ave., 10/4, Tomsk, 634055
Bibliografia
- Jamali-Sheini F., Cheraghizade M., Yousefi R. // Solid State Sci. 2018. V. 79. P. 30. https://doi.org/10.1088/1361-6641/ab0723
- Acar C., Dincer I., Naterer G.F. // Int. J. Energy Res. 2016. V. 40. № 11. P. 1449. https://doi.org/10.1002/er.3549
- Markovskaya D.V., Kozlova E.A., Stonkus O.A., Saraev A.A., Cherepanova S.V., Parmon V.N. // Int. J. Hydrogen Energy. 2017. V. 42. № 51. P. 30067. https://doi.org/10.1016/j.ijhydene.2017.10.104
- Pilemalm R., Pourovskii L., Mosyagin I., Simak S., Eklund P. // Condens. Matter. 2019. V. 4. Р. 36. https://doi.org/10.3390/condmat4020036
- Журенок А.В., Марковская Д.В., Потапенко К.О., Сидоренко Н.Д., Черепанова С.В., Сараев А.А., Герасимов Е.Ю., Козлова Е.А. // Кинетика и катализ. 2023. Т. 64. № 3. С. 276. https://doi.org/10.31857/S0453881123030139
- Kumaravel V., Mathew S., Bartlett J., Pillai S.C. // Appl. Catal. B: Environ. 2019. V. 244. P. 1021. https://doi.org/10.1016/j.apcatb.2018.11.080
- Fajrina N., Tahir M. //Int. J. of Hydrogen Energy. 2019. V. 44. N2. P. 540–577.
- Huang J., Li R., Li D., Chen P., Zhang Q., Liu H., Lv W., Liu G., Feng Y. // J. Hazard. Mater. 2020. V. 386. P. 121634.
- Liang Y., Li W., Wang X., Zhou R., Ding H. // Ceramics Int. 2022. V. 48. № 2. P. 2826. https://doi.org/10.1016/j.ceramint.2021.10.072.
- Silva B.A., Silva J.C.G., González S.Y.G., Moreira R.F.P., Peralta R.A., Notza https://www.sciencedirect.com/author/9939927800/dachamir-hotzaD., de Noni A. Junior // Ceramics Int. 2022. V. 48. № 22. P. 32917. https://doi.org/10.1016/j.ceramint.2022.07.221
- Ullah H., Tahir A.A., Bibi S., Mallick T.K., Karazhanov S. Zh. // Appl. Catal. B: Environ. 2018. V. 229. P. 24. https://doi.org/10.1016/J.APCATB.2018.02.001
- Ma Y., Yumeng F., Wang M., Liang X. // J. Energy Chem. 2021. V. 56. P. 353.
- Fang C.M., Orhan E., de Wijs G.A., Hintzen H.T. // J. Mater. Chem. 2001. № 11. P. 1248. https://doi.org/10.1039/В005751G
- Орлов В.М., Седнева Т.А. https://elibrary.ru/item.asp?id=28100298 // Перспективные материалы. 2017. № 1. С. 5.
- Li D., Zeng L., Li B., Yang X., Yu Q., Wu Z. // Mater. Des. 2020. V. 187. P. 108416. https://doi.org/10.1016/j.matdes.2019.108416
- Skvortsova L.N., Chukhlomina L.N., Minakova T.S., Sherstoboeva M.V. // Rus. J. Appl. Chem. 2017. № 90. P. 1246.
- Artiukh I.A., Bolgaru K.A., Dychko K.A., Bavykina A.V., Sastre F., Skvortsova L.N. // J. ChemistrySelect. 2021. № 6. P. 10025. https://doi.org/10.1002/slct.202102014
- Bacardit J., Stotzner J., Chamarro E. // Ind. Eng. Chem. Res. 2007. V. 46. № 23. P. 7615.
- Wadley S., Waite T.D. Fenton Processes-Advanced Oxidation Processes for Water and Wastewater Treatment. London: IWA Publishing, 2004. P. 111–135.
- Jin O., Lu B., Tao Y.P.X, Himmelhaver C., ShenY., Gu S., Zeng Y., Li X.Y. // Catal. Today. 2019. № 3. Р. 324. https://doi.org/10.1016/j.cattod.2019.12.006
- Junge H., Boddien A., Capitta F., Loges B., Noyes J.R., Gladiali S., Beller M. // Tetrahedron Lett. 2009. V. 50. № 14. Р.1603.
- Fellay C., Dyson P.J., Laurenczy G.A. // Angew. Chem. Int. Edit. 2008. V. 47. № 21. P. 3966.
- Клопотов А.А., Абзаев Ю.А., Потекаев А.И., Волокитин О.Г. Основы рентгеноструктурного анализа в материаловедении. Томск: Изд-во ТГАСУ, 2012. 276 с.
- Скворцова Л.Н., Казанцева К.И., Болгару К.А., Артюх И.А., Регер А.А., Дычко К.А. // Неорганические материалы. 2023. № 3. С. 333. https://doi.org/10.1134/S0020168523030123
- Гриценко В.А. // Успехи физических наук. 2012. Т. 182. № 5. С. 531.
- Farias J., Albizzatti E.D., Alfano O.M. // Catal. Today. 2009. V. 144. P. 117.
- Tian Y.C., Fang W.H. // J. Phys. Chem. A. 2006. V. 110. P. 11704.
- Pozdnyakov I.P., Glebov E.M., Plyusnin V.F., Grivin V.P., Ivanov Y.V., Vorobyev D.Y., Bazhin N.M. // Pure Appl. Chem. 2000. V. 72. № 11. P. 2187.
- Ohtani B. // Chem. Lett. 2008. V. 37. P. 217.
- Ohtani B. // Phys. Chem. 2014. V. 16. № 5. P. 1788.
- Kondarides D.I., Daskalaki V.M., Patsoura A., Verykios X.E. // Catal. Lett. 2008. V. 122. P. 26.
- Куренкова А.Ю., Козлова Е.А. Каичев В.В. // Кинетика и катализ. 2020. Т. 61. № 6. С. 812. https://doi.org/10.31857/S0453881120060052
- Puga A.V. // Coord. Chem. Rev. 2016. V. 315. P. 1. https://doi.org/10.1016/j.ccr.2015.12.009
Arquivos suplementares
