Oxidative Damage and Antioxidant Response of Acinetobacter calcoaceticus, Pseudomonas putida and Rhodococcus erythropolis Bacteria during Antibiotic Treatment
- 作者: Sazykin I.S.1, Plotnikov A.A.1, Lanovaya O.D.1, Onasenko K.A.1, Polinichenko A.E.1, Mezga A.S.1, Azhogina T.N.1, Litsevich A.R.1, Sazykina M.A.1
-
隶属关系:
- Southern Federal University
- 期: 卷 60, 编号 1 (2024)
- 页面: 39-47
- 栏目: Articles
- URL: https://medjrf.com/0555-1099/article/view/674573
- DOI: https://doi.org/10.31857/S0555109924010049
- EDN: https://elibrary.ru/HCUPXZ
- ID: 674573
如何引用文章
详细
In this work, oxidative damage and the level of antioxidant response in Acinetobacter calcoaceticus, Pseudomonas putida, and Rhodococcus erythropolis cells under the influence of such antibiotics as ampicillin, azithromycin, rifampicin, tetracycline, and ceftriaxone were studied. The level of protein carboxylation and lipid peroxidation (LPO), as well as the activity of superoxide dismutase (SOD), catalase, glutathione reductase (GR), and the level of glutathione 3 and 6 hours after antibiotic treatment of bacteria were assessed. It is observed that SOD induction occurs earlier and is more active than catalase induction. In A. calcoaceticus, SOD is induced together with protein carboxylation and probably protects them from oxidative damage, while catalase induction correlates with LPO. A positive correlation is also noted between catalase activity and glutathione content in R. erythropolis. Catalase activity increases insignificantly and even decreases under the studied antibiotics influence, which is associated with an insignificant level of lipid peroxidation in most prokaryotes. On the other hand, low catalase activity can contribute to genome destabilization as a result of oxidative stress and enhance the adaptive evolution of bacteria.
全文:

作者简介
I. Sazykin
Southern Federal University
Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090
A. Plotnikov
Southern Federal University
Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090
O. Lanovaya
Southern Federal University
Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090
K. Onasenko
Southern Federal University
Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090
A. Polinichenko
Southern Federal University
Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090
A. Mezga
Southern Federal University
Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090
T. Azhogina
Southern Federal University
Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090
A. Litsevich
Southern Federal University
Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090
M. Sazykina
Southern Federal University
编辑信件的主要联系方式.
Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090
参考
- Yoneyama H., Katsumata R. // Biosci. Biotechnol. Biochem. 2006. V. 70. № 5. P. 1060–1075.
- Фурман Ю.В., Артюшкова Е. Б., Аниканов А. В. // Актуальные проблемы социально-гуманитарного и научно-технического знания. 2019. № 1. С. 1–3.
- Пескин А.В. // Биохимия. 1997. Т. 62. № 12. С. 1571–1578.
- Imlay J.A. // Cur. Opin. Microbiol. 2015. V. 24. P. 124–131.
- Sazykin I.S., Sazykina M. A. // Gene. 2023. V. 857. P. 147170. https://doi.org/10.1016/j.gene.2023.147170
- Goyal A. // iScience. 2022. V. 25. № 5. P. 104312.
- Levine R.L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G. et al. // Methods Enzymol. 1990. V. 186. P. 464–478.
- Дубинина Е.Е., Бурмистров С. О., Ходов Д. А., Поротов Г. Е. // Вопросы медицинской химии. 1995. Т. 41. № 1. С. 24–26.
- Стальная И.Д., Гаришвили Т. Г. // Современные методы в биохимии. 1977. Т. 2. № 3. С. 66–68.
- Королюк М. А., Иванова Л. К., Майорова И. Г., Токарева В. А. //Лабораторное дело. 1988. № 4. С. 44–47.
- Сирота Т.В. // Вопросы медицинской химии. 1999. Т. 45. № 3. С. 263–272.
- Ellman G.L. // Arch. Biochem. Biophys. 1959. V. 82. № 1. P. 70–77.
- Юсупова Л.Б. // Лабораторное дело. 1989. Т. 4. № 19–21. С. 13.
- Wanarska E., Mielko K. A., Maliszewska I., Młynarz P. // Sci. Rep. 2022. V. 12. № 1. P. 1913.
- Shin B., Park C., Park W. //Appl. Microbiol. Biotechnol. 2020. Т. 104. С. 1423–1435.
- Belenky P., Ye J. D., Porter C. B., Cohen N. R., Lobritz M. A., Ferrante T. et al. // Cell Rep. 2015. V. 13. № 5. P. 968–980.
- Brogden R.N., Ward A. // Drugs. 1988. V. 35. № 6. P. 604–645.
- Постникова Л.Б., Соодаева С. К., Климанов И. А., Кубышева Н. И., Афиногенов К. И., Глухова М. В., Никитина Л. Ю. // Пульмонология. 2017. V. 27. № 5. P. 664–671.
- Куликова Н. А. // Международный студенческий научный вестник. 2017. № 4–5. С. 614–615.
- Weimer A., Kohlstedt M., Volke D. C., Nikel P. I., Wittmann C. // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 7745–7766.S
- Nikel P. I., Fuhrer T., Chavarría M., Sánchez-Pascuala A., Sauer U., de Lorenzo V. // ISME J. 2021. V. 15. № 6. P. 1751–1766.
- Van Acker H., Gielis J., Acke M., Cools F., Cos P., Coenye T. // PloS One. 2016. V. 11. № 7. e0159837. https://doi.org/10.1371/journal.pone.0159837
- Pátek M., Grulich M., Nešvera J. // Biotechnol. Adv. 2021. V. 53. P. 107698.
- Urbano S. B., Di Capua C., Cortez N., Farías M. E., Alvarez H. M. // Extremophiles. 2014. V. 18. P. 375–384.
- Meireles A., Faia S., Giaouris E., Simões M. // Biofouling. 2018. V. 34. № 10. P. 1150–1160.
- Ren X., Zou L., Holmgren A. // Curr. Med. Chem. 2020. V. 27. № 12. P. 1922–1939. https://doi.org/10.2174/0929867326666191007163654
- Cleeland R., Squires E. // Am. J. Med. 1984. V. 77. (4C). P. 3–11.
- Mourenza Á., Gil J. A., Mateos L. M., Letek M. // Antioxidants. 2020. V. 9. № 5. P. 361.
- Aguilera J., Rautenberger R. // Oxidative Stress in Aquatic Ecosystems. 2011. P. 58–71. https://doi.org/10.1002/9781444345988.ch4
- Martins D., McKay G., Sampathkumar G., Khakimova M., English A. M., Nguyen D. // PNAS. 2018. V. 115. № 39. P. 9797–9802.
- Heindorf M., Kadari M., Heider C., Skiebe E., Wilharm G. // PloS One. 2014. V. 9. № 7. P. e101033.
- Retsema J., Girard A., Schelkly W., Manousos M., Anderson M., Bright G. et al. // Antimicrob. Agents Сhemother. 1987. V. 31. № 12. P. 1939–1947.
- Mirzaei R., Mesdaghinia A., Hoseini S. S., Yunesian M. // Chemosphere. 2019. V. 221. P. 55–66.
- Ramanathan S., Arunachalam K., Chandran S., Selvaraj R., Shunmugiah K. P., Arumugam V. R. // J. Аppl. Microbiol. 2018. V. 125. № 1. P. 56–71. https://doi.org/10.1111/jam.13741.
- Zhang Y.N., Duan K. M. // Sci. China C Life Sci. 2009. V. 52. № 6. P. 501–505.
- Daschner F.D., Frank U. // Infection. 1989. V. 17. № 4. P. 272–274.
- Gnann Jr J. W., Goetter W. E., Elliott A. M., Cobbs C. G. // Antimicrob. Agents Chemother // 1982. V. 22. № 1. P. 1–9.
- El-Barbary M.I., Hal A. M. // J. Aquac. Res. Development. 2017. V. 8. № 7. P. 1–7. https://doi.org/10.4172/2155-9546.1000499
- Konikkat S., Scribner M. R., Eutsey R., Hiller N. L., Cooper V. S., McManus J. // PLoS genetics. 2021. V. 17. № 7: e1009634. https://doi.org/10.1371/journal.pgen.1009634
- Elbehiry A., Marzouk E., Aldubaib M., Moussa I., Abalkhail A., Ibrahem M. et al. // AMB Express. 2022. V. 12. № 1. P. 53. https://doi.org/10.1186/s13568-022-01390-1
- Plaggenborg R., Overhage J., Loos A., Archer J. A. C., Lessard P., Sinskey A. J. et al. // Appl. Microbiol. Biotechnol. 2006. V. 72. № 4. P. 745–755.
- Stancu M. M. // J. Environ. Sci. (Shina) 2014. V. 26. № 10. P. 2065–2075. https://doi.org/10.1016/j.jes.2014.08.006
- Yamshchikov A.V., Schuetz A., Lyon G. M. // Lancet Infecti. Dis. 2010. V. 10. № 5. P. 350–359.
- McNeil M.M., Brown J. M. // Eur. J. Epidemiol. 1992. V. 8. № 3. P. 437–443.
- Asoh N., Watanabe H., Fines-Guyon M., Watanabe K., Oishi K., Kositsakulchai W. et al. // J. Clin. Microbiol. 2003. V. 41. № 6. P. 2337–2340.
- Vaubourgeix J., Lin G., Dhar N., Chenouard N., Jiang X., Botella H. et al. // Cell Host & Microbe. 2015. V. 17. № 2. P. 178–190.
- Nyström T. // EMBO J. 2005. V. 24. № 7. P. 1311–1317.
补充文件
