Oxidative Damage and Antioxidant Response of Acinetobacter calcoaceticus, Pseudomonas putida and Rhodococcus erythropolis Bacteria during Antibiotic Treatment

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, oxidative damage and the level of antioxidant response in Acinetobacter calcoaceticus, Pseudomonas putida, and Rhodococcus erythropolis cells under the influence of such antibiotics as ampicillin, azithromycin, rifampicin, tetracycline, and ceftriaxone were studied. The level of protein carboxylation and lipid peroxidation (LPO), as well as the activity of superoxide dismutase (SOD), catalase, glutathione reductase (GR), and the level of glutathione 3 and 6 hours after antibiotic treatment of bacteria were assessed. It is observed that SOD induction occurs earlier and is more active than catalase induction. In A. calcoaceticus, SOD is induced together with protein carboxylation and probably protects them from oxidative damage, while catalase induction correlates with LPO. A positive correlation is also noted between catalase activity and glutathione content in R. erythropolis. Catalase activity increases insignificantly and even decreases under the studied antibiotics influence, which is associated with an insignificant level of lipid peroxidation in most prokaryotes. On the other hand, low catalase activity can contribute to genome destabilization as a result of oxidative stress and enhance the adaptive evolution of bacteria.

全文:

受限制的访问

作者简介

I. Sazykin

Southern Federal University

Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090

A. Plotnikov

Southern Federal University

Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090

O. Lanovaya

Southern Federal University

Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090

K. Onasenko

Southern Federal University

Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090

A. Polinichenko

Southern Federal University

Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090

A. Mezga

Southern Federal University

Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090

T. Azhogina

Southern Federal University

Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090

A. Litsevich

Southern Federal University

Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090

M. Sazykina

Southern Federal University

编辑信件的主要联系方式.
Email: samara@sfedu.ru
俄罗斯联邦, Rostov-on-Don, 344090

参考

  1. Yoneyama H., Katsumata R. // Biosci. Biotechnol. Biochem. 2006. V. 70. № 5. P. 1060–1075.
  2. Фурман Ю.В., Артюшкова Е. Б., Аниканов А. В. // Актуальные проблемы социально-гуманитарного и научно-технического знания. 2019. № 1. С. 1–3.
  3. Пескин А.В. // Биохимия. 1997. Т. 62. № 12. С. 1571–1578.
  4. Imlay J.A. // Cur. Opin. Microbiol. 2015. V. 24. P. 124–131.
  5. Sazykin I.S., Sazykina M. A. // Gene. 2023. V. 857. P. 147170. https://doi.org/10.1016/j.gene.2023.147170
  6. Goyal A. // iScience. 2022. V. 25. № 5. P. 104312.
  7. Levine R.L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G. et al. // Methods Enzymol. 1990. V. 186. P. 464–478.
  8. Дубинина Е.Е., Бурмистров С. О., Ходов Д. А., Поротов Г. Е. // Вопросы медицинской химии. 1995. Т. 41. № 1. С. 24–26.
  9. Стальная И.Д., Гаришвили Т. Г. // Современные методы в биохимии. 1977. Т. 2. № 3. С. 66–68.
  10. Королюк М. А., Иванова Л. К., Майорова И. Г., Токарева В. А. //Лабораторное дело. 1988. № 4. С. 44–47.
  11. Сирота Т.В. // Вопросы медицинской химии. 1999. Т. 45. № 3. С. 263–272.
  12. Ellman G.L. // Arch. Biochem. Biophys. 1959. V. 82. № 1. P. 70–77.
  13. Юсупова Л.Б. // Лабораторное дело. 1989. Т. 4. № 19–21. С. 13.
  14. Wanarska E., Mielko K. A., Maliszewska I., Młynarz P. // Sci. Rep. 2022. V. 12. № 1. P. 1913.
  15. Shin B., Park C., Park W. //Appl. Microbiol. Biotechnol. 2020. Т. 104. С. 1423–1435.
  16. Belenky P., Ye J. D., Porter C. B., Cohen N. R., Lobritz M. A., Ferrante T. et al. // Cell Rep. 2015. V. 13. № 5. P. 968–980.
  17. Brogden R.N., Ward A. // Drugs. 1988. V. 35. № 6. P. 604–645.
  18. Постникова Л.Б., Соодаева С. К., Климанов И. А., Кубышева Н. И., Афиногенов К. И., Глухова М. В., Никитина Л. Ю. // Пульмонология. 2017. V. 27. № 5. P. 664–671.
  19. Куликова Н. А. // Международный студенческий научный вестник. 2017. № 4–5. С. 614–615.
  20. Weimer A., Kohlstedt M., Volke D. C., Nikel P. I., Wittmann C. // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 7745–7766.S
  21. Nikel P. I., Fuhrer T., Chavarría M., Sánchez-Pascuala A., Sauer U., de Lorenzo V. // ISME J. 2021. V. 15. № 6. P. 1751–1766.
  22. Van Acker H., Gielis J., Acke M., Cools F., Cos P., Coenye T. // PloS One. 2016. V. 11. № 7. e0159837. https://doi.org/10.1371/journal.pone.0159837
  23. Pátek M., Grulich M., Nešvera J. // Biotechnol. Adv. 2021. V. 53. P. 107698.
  24. Urbano S. B., Di Capua C., Cortez N., Farías M. E., Alvarez H. M. // Extremophiles. 2014. V. 18. P. 375–384.
  25. Meireles A., Faia S., Giaouris E., Simões M. // Biofouling. 2018. V. 34. № 10. P. 1150–1160.
  26. Ren X., Zou L., Holmgren A. // Curr. Med. Chem. 2020. V. 27. № 12. P. 1922–1939. https://doi.org/10.2174/0929867326666191007163654
  27. Cleeland R., Squires E. // Am. J. Med. 1984. V. 77. (4C). P. 3–11.
  28. Mourenza Á., Gil J. A., Mateos L. M., Letek M. // Antioxidants. 2020. V. 9. № 5. P. 361.
  29. Aguilera J., Rautenberger R. // Oxidative Stress in Aquatic Ecosystems. 2011. P. 58–71. https://doi.org/10.1002/9781444345988.ch4
  30. Martins D., McKay G., Sampathkumar G., Khakimova M., English A. M., Nguyen D. // PNAS. 2018. V. 115. № 39. P. 9797–9802.
  31. Heindorf M., Kadari M., Heider C., Skiebe E., Wilharm G. // PloS One. 2014. V. 9. № 7. P. e101033.
  32. Retsema J., Girard A., Schelkly W., Manousos M., Anderson M., Bright G. et al. // Antimicrob. Agents Сhemother. 1987. V. 31. № 12. P. 1939–1947.
  33. Mirzaei R., Mesdaghinia A., Hoseini S. S., Yunesian M. // Chemosphere. 2019. V. 221. P. 55–66.
  34. Ramanathan S., Arunachalam K., Chandran S., Selvaraj R., Shunmugiah K. P., Arumugam V. R. // J. Аppl. Microbiol. 2018. V. 125. № 1. P. 56–71. https://doi.org/10.1111/jam.13741.
  35. Zhang Y.N., Duan K. M. // Sci. China C Life Sci. 2009. V. 52. № 6. P. 501–505.
  36. Daschner F.D., Frank U. // Infection. 1989. V. 17. № 4. P. 272–274.
  37. Gnann Jr J. W., Goetter W. E., Elliott A. M., Cobbs C. G. // Antimicrob. Agents Chemother // 1982. V. 22. № 1. P. 1–9.
  38. El-Barbary M.I., Hal A. M. // J. Aquac. Res. Development. 2017. V. 8. № 7. P. 1–7. https://doi.org/10.4172/2155-9546.1000499
  39. Konikkat S., Scribner M. R., Eutsey R., Hiller N. L., Cooper V. S., McManus J. // PLoS genetics. 2021. V. 17. № 7: e1009634. https://doi.org/10.1371/journal.pgen.1009634
  40. Elbehiry A., Marzouk E., Aldubaib M., Moussa I., Abalkhail A., Ibrahem M. et al. // AMB Express. 2022. V. 12. № 1. P. 53. https://doi.org/10.1186/s13568-022-01390-1
  41. Plaggenborg R., Overhage J., Loos A., Archer J. A. C., Lessard P., Sinskey A. J. et al. // Appl. Microbiol. Biotechnol. 2006. V. 72. № 4. P. 745–755.
  42. Stancu M. M. // J. Environ. Sci. (Shina) 2014. V. 26. № 10. P. 2065–2075. https://doi.org/10.1016/j.jes.2014.08.006
  43. Yamshchikov A.V., Schuetz A., Lyon G. M. // Lancet Infecti. Dis. 2010. V. 10. № 5. P. 350–359.
  44. McNeil M.M., Brown J. M. // Eur. J. Epidemiol. 1992. V. 8. № 3. P. 437–443.
  45. Asoh N., Watanabe H., Fines-Guyon M., Watanabe K., Oishi K., Kositsakulchai W. et al. // J. Clin. Microbiol. 2003. V. 41. № 6. P. 2337–2340.
  46. Vaubourgeix J., Lin G., Dhar N., Chenouard N., Jiang X., Botella H. et al. // Cell Host & Microbe. 2015. V. 17. № 2. P. 178–190.
  47. Nyström T. // EMBO J. 2005. V. 24. № 7. P. 1311–1317.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The content of carbonyl groups (nM phenylhydrazones/mg protein) in the proteins of the studied bacterial strains after treatment with antibiotics: 1 - control; 2 - azithromycin; 3 - ampicillin; 4 - rifampicin; 5 - tetracycline; 6 - ceftriaxone; a - 3 h, b - 6 h. * The differences are statistically significant at p < 0.05.

下载 (179KB)
3. Fig. 2. Lipid peroxidation (MDA, nM/ml) in the studied bacterial strains after treatment with antibiotics: 1 - control; 2 - azithromycin; 3 - ampicillin; 4 - rifampicin; 5 - tetracycline; 6 - ceftriaxone; a - 3 h, b - 6 h. * The differences are statistically significant at p < 0.05.

下载 (178KB)
4. Fig. 3. SOD activity (U/mg protein × min) under the influence of antibiotics on the studied bacterial strains: 1 — control; 2 — azithromycin; 3 — ampicillin; 4 — rifampicin; 5 — tetracycline; 6 — ceftriaxone; a — 3 h, b — 6 h. * Differences are statistically significant at p < 0.05.

下载 (149KB)
5. Fig. 4. Catalase activity (nM H2O2/mg protein) under the influence of antibiotics on the studied bacterial strains: 1 — control; 2 — azithromycin; 3 — ampicillin; 4 — rifampicin; 5 — tetracycline; 6 — ceftriaxone; a — 3 h, b — 6 h. * Differences are statistically significant at p < 0.05.

下载 (184KB)
6. Fig. 5. Glutathione concentration (μM GSH/g protein) upon exposure to antibiotics on the studied bacterial strains: 1 — control; 2 — azithromycin; 3 — ampicillin; 4 — rifampicin; 5 — tetracycline; 6 — ceftriaxone; a — 3 h, b — 6 h. * Differences are statistically significant at p < 0.05.

下载 (143KB)
7. Fig. 6. Glutathione reductase activity (IU GR/g protein) upon exposure to antibiotics on the studied bacterial strains: 1 — control, without antibiotic; 2 — azithromycin; 3 — ampicillin; 4 — rifampicin; 5 — tetracycline; 6 — ceftriaxone; a — 3 h, b — 6 h. * Differences are statistically significant at p < 0.05.

下载 (186KB)
8. Fig. 7. Correlation between the activity of antioxidant enzymes and oxidative damage to bacterial cell components in the studied strains (significant values ​​are highlighted in color, p < 0.05). A — SOD, B — catalase, C — GSH, D — GR, D — protein carboxylation, E — LPO.

下载 (111KB)

版权所有 © Russian Academy of Sciences, 2024