ИЗМЕНЕНИЕ СОСТАВА ЖИРНЫХ КИСЛОТ И ИНСУЛИНСВЯЗЫВАЮЩАЯ АКТИВНОСТЬ КЛЕТОК В УСЛОВИЯХ ОКСИДАТИВНОГО СТРЕССА ПРИ ЭКСПЕРИМЕНТАЛЬНОМ САХАРНОМ ДИАБЕТЕ



Цитировать

Полный текст

Аннотация

Параллельное исследование влияния экспериментального сахарного диабета (СД) на уровень липидов и состав жирных кислот (ЖК) в крови и гомогенатах печени и инсулинсвязывающую активность клеток в условиях оксидативного стресса показало, что у крыс уже в ранние сроки развития диабета наряду с гиперлипопротеинемией, гипертриглицеридемией и гиперхолестеринемией отмечаются значительные изменения в составе ЖК в крови и гомогенатах печени. Эти изменения сопровождаются перекисным окислением липидов и снижением активности ферментов-антиоксидантов, а также уменьшением инсулинсвязывающей активности клеток. При экспериментальном СД значительное повышение уровня насыщенных жирных кислот, особенно пальмитиновой жирной кислоты, приводит к снижению уровней мононенасыщенных жирных кислот МННЖК (за счет олеиновой ЖК), что существенно отличается от соответствующего спектра у больных диабетом. Повышение концентрации эйкозапентаеновой и докозагексаеновой кислот сопровождается снижением суммарного содержания омега-3 ЖК за счет альфа-линоленовой ЖК, при этом достоверно снижается уровень омега-6 ЖК как в эритроцитах, так и в гомогенатах печени. Результаты исследования свидетельствуют также о том, что уже в ранних стадиях развития СД изменения в пуле ЖК эритроцитов и гомогенатах печени аналогичны (с небольшими отличиями) и во всех изучаемых тканях, нарушение метаболизма ЖК имеет атеросклеротическую направленность.

Полный текст

Введение Известно, что основной причиной повышения смертности при сахарном диабете (СД) являются сосудистые осложнения. Между тем молекулярные механизмы, определяющие взаимосвязь между нарушением гомеостаза глюкозы, метаболизма жирных кислот (ЖК) и развитием диабетических ангиопатий, окончательно не ясны. По мнению ряда авторов, нарушение липидного обмена и дефицит в клетках эссенциальных полиненасыщенных ЖК (ПНЖК) приводит к формированию резистентности к инсулину, так как нарушается их активный рецепторный транспорт в составе липопротеинов [1, 2]. Эндогенный недостаток в клетках ПНЖК приводит к нарушению транспортных систем поступления в клетку глюкозы, блокаде рецепторопосредованного поглощения ЖК и компенсаторному увеличению пассивного поглощения клетками свободных ЖК (СЖК) [3], что может привести к нарушению состава ЖК и инсулинсвязывающей активности (ИСА) в тканях. Цель исследования - изучение комплекса нарушений липидного обмена, особенностей метаболизма ЖК и изменения активности инсулиновых рецепторов в условиях оксидативного стресса при экспериментальном СД. Материал и методы Эксперименты проведены на 80 крысах-самцах линии Вистар одной возрастной группы (10-14 мес) массой 210-250 г. СД вызывали путём однократного внутрибрюшинного введения 2,5% раствора стрептозотоцина (фирмы «Sigma») в дозе 60 мг на 1 кг массы животного на фоне 24-48-часового голодания. Кровь у животных брали до эксперимента, через 3, 7, 14, 21, 28 и 35 дней после введения стрептозотоцина. Контрольным животным вводили эквивалентное количество физиологического раствора. ИСА мембран клеток определяли по описанному нами методу [4]. Связывание 125I-инсулина с рецепторами плазматических мембран исследовали по методу I. Roth (1983). Концентрацию лактата и аденозинтрифосфата (АТФ) крови определяли с помощью наборов фирмы «Boehringer», активность Na+, K+ - Ca2+-АТФазы определяли по модифицированному методу [5]. Об активности процессов перекисного окисления липидов (ПОЛ) в плазме крови, мембране эритроцитов и гомогенатах печени (ГП) судили по содержанию тиобарбитуровой кислоты (ТБК) активных продуктов и малонового диальдегида (МДА), для определения концентрации которых использовали метод K. Yagi [6]. Активность каталазы (КТ) в крови оценивали по методу М. Королюк и соавт. [7]. Материалом для исследования ЖК служили эритроциты (Эр) и ГП. Экстракцию липидов из гомогенатов проводили по методу J. Folch и соавт. [8], после чего осуществляли гидролиз и метилирование ЖК методом Kenichi Ichihara и Yumeto Fukubayashi [9]. Применяли метод газожидкостной хроматографии с масс-спектрометрией (ГХ/МС) с помощью Trace GC Ultra ITQ 900 («ThermoScientific», США). Прибор калибровали стандартными смесями метиловых эфиров ЖК фирмы «Sigma» (США). Расчёт площади и идентификацию пиков проводили с помощью программно-аппаратного комплекса Analytica for Windows с использованием IBM Pentium IV 1800. Программное обеспечение для обработки данных осуществлялось с применением Xcalibur («Thermo»); использовали спектральные библиотеки Mainlib, Microsoft Excel 2010. Цифровой материал обрабатывали методом вариационной статистики с использованием t-критерия Стьюдента. Результаты и обсуждение Уровень глюкозы в крови у крыс на 3-и сутки после введения стрептозотоцина достоверно увеличился в 3,2 раза, в моче - в 5,7 раза по сравнению с контрольной группой животных. В течение последующих дней наблюдений количество глюкозы в крови крыс этой группы также оставалось стабильно высоким. Максимального значения уровень гликемии натощак достиг к 28-му дню исследования (24,52 ± 1,82 ммоль/л). Декомпенсация у таких крыс подтверждалась снижением содержания C-пептида в плазме крови. Уровень C-пептида на 21-й день эксперимента в группе крыс с диабетом снизился на 39,6% (p < 0,05); потребление воды увеличивалось в среднем в 2,5 раза и отмечалась полиурия; резко снизилась масса тела (на 7-й день на 28%, к 14-му дню на 26%, к 21-му дню на 39%). О наличии дисбаланса в углеводном обмене у диабетических крыс свидетельствует присутствие глюкозы в моче, количество которой было нестабильным и варьировало от 3,8 до 1,9 ммоль/л. На 3-и сутки уровень глюкозы достоверно повысился в крови более чем в 2 раза, на 7-е сутки - более чем в 3,5 раза, через 28 дней после введения препарата уровень гликемии составил 27,88 ммоль/л при уровне 5,77 ммоль в контроле. Далее отмечалось тенденция к снижению уровня гликемии. Параллельно с гипергликемией в зависимости от времени, прошедшего после введения стрептозотоцина, возрастала и концентрация МДА в изучаемых тканях, достигая высоких значении на 28-е сутки. Изменения метаболических параметров на 7-е сутки после введения стрептозотоцина, представленные в табл.1, показывают, что у животных в сыворотке крови отмечалось повышение уровней липопротеидов низкой (ЛПНП) и очень низкой плотности (ЛПОНП) на фоне снижения содержания липопротеидов высокой плотности (ЛПВП), повышалась также концентрация молочной кислоты в 1,8 раза (p < 0,01). В мембране Эр наблюдалось повышение концентрации МДА в 1,4 раза, что сопровождалось снижением активности КТ в лизатах Эр на 35%, Na+ K+-АТФазы - в 3 раза, ИСА - в 1,7 раза (p < 0,05). Это привело к снижению утилизации глюкозы Эр в 3,5 раза и, следовательно, - к снижению уровня АТФ в Эр в 1,5 раза (p < 0,05). Аналогичные метаболические нарушения наблюдались также в ГП и сопровождались снижением концентрации АТФ более чем в 2 раза (p < 0,05), ИСА - в 1,63 раза. Данные, полученные по сатурационным кривым насыщения, показатели количества и сродства свободных и занятых инсулиновых рецепторов (ИР) (Ro, Ke, Kf соответственно), а также средние величины максимального специфического связывания 125I-инсулина в плазматических мембранах (ПМ) гепатоцитов свидетельствуют о том, что через 3 сут после введения стрептозотоцина количество ИР достоверно снижалось до 14,5 ± 2,3% (p < 0,01), через 7 сут - до 21,8 ± 0,9% по сравнению с контролем (табл. 2). Анализ данных показал, что количество рецепторов на 1 мг белка на 3-и сутки составляло 7 и 4 пг/мг для контрольных и диабетических животных соответственно. Параллельный ход кривых связывания инсулина у опытных и контрольных животных указывает на то, что сродство гормона к рецептору аналогично; различия заключаются в снижении в 2 раза числа ИР при СД за счет увеличения рецепторной емкости и количества ИР с высоким сродством. На 7-е сутки наблюдалось увеличение количества ИР в ПМ печени без изменения их аффинитета. Через 3 сут после введения стрептозотоцина обнаружены аналогичные изменения. Степень отрицательной кооперативности рецепторов, характеризуемая величиной a = Kf/Ke, не изменилась; максимальное уменьшение этой величины при «кратковременном» диабете для мембран печёночных клеток было в пределах 30%. О нарушении процессов утилизации глюкозы в изучаемых тканях свидетельствует также отрицательная корреляционная взаимосвязь между уровнем глюкозы крови и процессами утилизации глюкозы Эр (r = -0,62; p < 0,05) и ГП (r = -0,52; p < 0,05). Анализ данных литературы [10, 11] и результаты наших исследований указывают на то, что после введения стрептозотоцина у крыс на 7-10-е сутки происходят клинико-биохимические изменения, характерные для СД человека. В пуле насыщенных ЖК (НЖК) максимальное повышение уровня отдельных фракций в Эр (табл. 3) отмечено в опытной группе крыс на 7-е сутки после введения стрептозотоцина: миристиновой (С14:0) кислоты на 56%, пальмитиновой (С16:0) - на 45,8%, стеариновой (С18:0) - на 24,8% по отношению к контрольной группе. Содержание мононасыщенных ЖК (МНЖК) пальмитолеиновой и миристолеиновой было низким. Образование МНЖК из насыщенных кислот катализируется 9-десатуразой. При её гиперэкспрессии происходит возрастание уровня пальмитиновой кислоты относительно стеариновой. Свидетельством повышенной активности синтазы ЖК в Эр в опытной группе является тот факт, что в опытной группе крыс уровень пальмитиновой кислоты снижен на 15,7% (p < 0,05) в сравнении с контролем, а суммарное содержание стеариновой и арахиновой - на 38,3% (p < 0,05). В отличие от других НЖК уровень миристиновой кислоты в Эр животных опытной группы не снижался, а, наоборот, имел тенденцию к росту (p = 0,2), по-видимому, в связи с тем, что миристиновая ЖК в основном включается в клеточные триглицериды (ТГ), что может привести к гипертриглицеридемии. Уровень олеиновой ЖК в Эр и ГП снижался в 1,72 ± 0,09 и 1,2 ± 0,03 раза соответственно (p < 0,05). Между тем как в Эр, так и в ГП крыс достоверно повышался уровень насыщенной пальмитиновой ЖК и снижались уровни МНЖК (за счёт олеиновой кислоты). Несмотря на то, что концентрация ЭПК и ДГК достоверно повышалась, при этом значительно снижалось суммарное содержание омега-3 ЖК за счёт альфа-линоленовой кислоты. Сумма омега-6 ЖК достоверно снижалась не только в Эр, но и в ГП. Суммарное содержание ЖК в семействе омега-9 в Эр на 7-е сутки после введения стрептозотоцина также достоверно снижалось. Суммарное соотношение НЖК/ННЖК особенно значительно возрастало через 28 дней после введения препарата (табл. 4). При этом через 28 сут достоверно повышались также уровни ДГК и ЭПК ЖК. В течение всего периода наблюдения наблюдалось снижение уровней омега-7 и омега-9 ЖК. Снижение уровня омега-7 (пальмитиновая и пальмитолеиновая кислоты) свидетельствует о том, что при этом увеличивался уровень ТГ, что и приводило к повышению степени гликемии. Между пальмитиновой кислотой и ТГ отмечена прямая корреляция (r = +0,87), между уровнем глюкозы в крови и пальмитиновой кислоты также обнаружена прямая корреляция (r = +0,63). Выводы 1. При СД в эксперименте уже в ранние сроки развития патологии наряду с гиперлипопротеинемией отмечаются значительные изменения в жирно-кислотном составе крови и ГП, что сопровождается повышением ПОЛ и снижением активности ИР и ферментов-антиоксидантов. 2. При экспериментальном СД повышение уровня насыщенной пальмитиновой ЖК приводит к уменьшению уровней МННЖК (за счёт олеиновой ЖК), что существенно отличается от соответствующего спектра у больных СД. 3. Полученные результаты исследования убедительно свидетельствуют о том, что уже в ранних стадиях развития СД изменения в пуле ЖК Эр и ГП аналогичны (с небольшими различиями), и в изучаемых тканях нарушение метаболизма ЖК имеет атеросклеротическую направленность.
×

Об авторах

Нина Погосовна Микаелян

ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

Email: ninmik@yandex.ru
д-р биол. наук, проф. кафедры биохимии лечебного факультета «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова», 117997, Москва 117997, г. Москва

А. Е Гурина

ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

117997, г. Москва

А. А Терентьев

ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

117997, г. Москва

А. А Микаелян

ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

117997, г. Москва

Список литературы

  1. Новгородцева Т.П., Караман Ю.К., Жукова Н.В., Лобанова Е.Г., Антонюк М.В. Особенности состава жирных кислот крови и уровень оксилипинов у пациентов с метаболическим синдромом. Клиническая лабораторная диагностика. 2010; (10): 22-5.
  2. Титов В.Н., Рожкова Т.А., Амелюшкина В.А. Клиническая биохимия гиперлипидемии и гипергликемии. Инсулин и метаболизм жирных кислот. Гипогликемическое действие гиполипидемических препаратов. Клиническая лабораторная диагностика. 2014; (3): 4-13.
  3. Phinney S.D. Fatty acids, inflammation and the metabolic syndrome. Am. J. Clin. Nutr. 2005; 82(6): 1151-2
  4. Микаелян Н.П., Князев Ю.А., Петрухин В.А., Микаелян А.В. Инсулинрецепторное взаимодействие в лимфоцитах и эритроцитах у беременных с гестационным сахарным диабетом. Сахарный диабет. 2006; (1): 15-7.
  5. Макаренко Е.В. АТФ-азная активность эритроцитов при хронических заболеваниях печени и желудка. Лабораторное дело. 1986; (3): 14-7.
  6. Yagi K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem. Med. 1976; 15(2): 212-6
  7. Королюк М.А., Иванова Л.И., Майорова И.Г. Метод определения активности каталазы. Лабораторное дело. 1988; (1): 16-9
  8. Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957; 226(1): 497-509.
  9. Ichihara K., Fukubayashi Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 2010; 51(3): 635-40.
  10. Rodríguez-Carrizalez A.D., Castellanos-González J.A., Martínez-Romero E.C., Miller-Arrevillaga G., Villa-Hernández D., Hernández-Godínez P.P. et al. Oxidants, antioxidants and mitochondrial function in non-proliferative diabetic retinopathy. J. Diabetes. 2014; 6(2): 167-75.
  11. Hink U., Tsilimingas N., Wendt M., Münzel T. Mechanisms underlying endothelial dysfunction in diabetes mellitus: therapeutic implications. Treat. Endocrinol. 2003; 2(5): 293-304.
  12. Harris W.S., Miller M., Tighe A.P., Davidson M.H., Schaefer E.J. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis. 2008; (197): 12-24.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Эко-Вектор", 2017



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия  ПИ № ФС 77 - 86296 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80632 от 15.03.2021 г
.



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах