ФОРМИРОВАНИЕ УДАРНО-ВОЛНОВОГО ТЕЧЕНИЯ ПРИ ЛОКАЛИЗАЦИИ НАНОСЕКУНДНЫХ РАЗРЯДОВ В НЕСТАЦИОНАРНОМ ПОТОКЕ В КАНАЛЕ С ПРЕПЯТСТВИЕМ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлены результаты исследований по воздействию импульсного объемного и поверхностного разрядов на высокоскоростное течение газа в прямоугольном канале ударной трубы с изменением профиля (препятствием на нижней стенке). Однократный наносекундный поверхностный разряд и разряд с предыонизацией от плазменных электродов (комбинированный разряд) инициировался в потоке за ударной волной с числами Маха Мs 3.2–3.4. Препятствие определяет распределение параметров обтекающего его потока и перераспределение плазмы импульсного разряда. Численным моделированием получены поля плотности газодинамического потока в условиях эксперимента и проведено сравнение с распределением плазмы разряда. Показано, что ударно-волновое воздействие разряда на поток за препятствием продолжалось от 25 до 70 мкс.

Об авторах

Д. И. Долбня

Московский государственный университет им. М.В. Ломоносова, Физический факультет

Email: tatarenkova.darya@yandex.ru
Россия, Москва

И. А. Знаменская

Московский государственный университет им. М.В. Ломоносова, Физический факультет

Email: tatarenkova.darya@yandex.ru
Россия, Москва

А. Е. Луцкий

Институт прикладной математики им. М.В. Келдыша РАН

Email: tatarenkova.darya@yandex.ru
Россия, Москва

Н. Н. Сысоев

Московский государственный университет им. М.В. Ломоносова, Физический факультет

Автор, ответственный за переписку.
Email: tatarenkova.darya@yandex.ru
Россия, Москва

Список литературы

  1. Стариковский А.Ю., Александров Н.Л. Управление газодинамическими потоками с помощью сверхбыстрого локального нагрева в сильнонеравновесной импульсной плазме // Физика плазмы. 2021. Т. 47. № 2. С. 126–192. https://doi.org/10.31857/S0367292121020062
  2. Wang J.-J., Choi K.-S., Feng L.-H., Jukes T.N., Whalley R.D. Recent developments in DBD plasma flow control // Progress in Aerospace Sciences. 2013. V. 62. P. 52–78. https://doi.org/10.1016/J.PAEROSCI.2013.05.003
  3. Kotsonis M. Diagnostics for characterisation of plasma actuators // Meas. Sci. Technol. 2015. V. 26. № 9. P. 092001. https://doi.org/10.1088/0957-0233/26/9/092001
  4. Суржиков С.Т. Гиперзвуковое обтекание острой пластины и двойного клина с электромагнитным актюатором // Изв. РАН. МЖГ. 2020. Т. 6. С. 106–120. https://doi.org/10.31857/S0568528120060110
  5. Bayoda K.D., Benard N., Moreau E. Nanosecond pulsed sliding dielectric barrier discharge plasma actuator for airflow control: Electrical, optical, and mechanical characteristics // Journal of Applied Physics. 2015. V. 118. № 6. P. 063301. https://doi.org/10.1063/1.4927844
  6. Leonov S.B., Kochetov I.V., Napartovich A.P., Sabel V.A., Yarantsev D.A. Plasmainduced ethylene ignition and flameholding in confined supersonic air flow at low temperatures // IEEE Trans Plasma Sci. 2011. V. 39. № 2. P. 781–787. https://doi.org/10.1109/TPS.2010.2091512
  7. Feng R., Li J., Wu Y., Zhu J., Song X., Li X. Experimental investigation on gliding arc discharge plasma ignition and flame stabilization in scramjet combustor // Aerospace Science and Technology. 2018. V. 79. P. 145–153. https://doi.org/10.1016/J.AST.2018.05.036
  8. Znamenskaya I.A., Dolbnya D.I., Ivanov I.E., Kuli-zade T.A., Sysoev N.N. Pulse volume discharge behind shock wave in channel flow with obstacle // Acta Astronautica. 2022. V. 195. P. 493–501. https://doi.org/10.1016/j.actaastro.2022.03.031
  9. Знаменская И.А. Методы панорамной визуализации и цифрового анализа теплофизических полей. Обзор // Научная визуализация. 2021. Т. 13. № 3. С. 125–158. https://doi.org/10.26583/sv.13.3.13
  10. Znamenskaya I.A., Koroteeva E.Y., Timokhin M.Y. Kuli-zade T.A., Tatarenkova D.I. Experimental investigation of the flow dynamics and boundary layer in a shock tube with discharge section based on digital panoramic methods // AIP Conference Proceedings. 2018. V. 2027. P. 030161.
  11. Borisov V.E., Chetverushkin B.N., Davydov A.A., Khankhasaeva Ya.V., Lutskii A.E. Heat flux in supersonic flow past ballistic model at various angles of attack and wall temperatures // Acta Astronautica. 2021. V. 183. P. 52–58.
  12. Cheeda V.K., Kumar A., Ramamurthi K. Influence of shear layers on the structure of shocks formed by rectangular and parabolic blockages placed in a subsonic flow-field, // Shock Waves. 2013. V.24. № 2. P. 157–169. https://doi.org/10.1007/s00193-013-0476-1
  13. Bedarev I.A., Goldfeld M.A., Zakharova Yu.V., Fedorova N.N. Investigation of temperature fields in supersonic flow behind a backward-facing step // Thermophysics and Aeromechanics. 2009. V. 16. № 3. P. 355–366. https://doi.org/10.1134/S0869864309030044

Дополнительные файлы


© Д.И. Долбня, И.А. Знаменская, А.Е. Луцкий, Н.Н. Сысоев, 2023