Statistics

Views

Abstract: 1984

PDF (English): 684

Cited-by

CrossRef: 40

  1. Noor F, Shahid S, Fatima M, Haider SZ, Shehri Z, Alshehri FF, et al. Bioinformatics and immunoinformatics approaches in the design of a multi-epitope vaccine targeting CTLA-4 for melanoma treatment. Molecular Diversity. 2025;. doi: 10.1007/s11030-025-11108-7
  2. Zhang Y, Zhu Y, Guo Q, Wang W, Zhang L. High-throughput sequencing analysis of the characteristics of the gut microbiota in aged patients with sarcopenia. Experimental Gerontology. 2023;182:112287. doi: 10.1016/j.exger.2023.112287
  3. Nahian M, Shahab M, Khan MR, Akash S, Banu TA, Sarkar MH, et al. Development of a broad-spectrum epitope-based vaccine against Streptococcus pneumoniae. PLOS ONE. 2025;20(1):e0317216. doi: 10.1371/journal.pone.0317216
  4. Hashempour A, Khodadad N, Akbarinia S, Ghasabi F, Ghasemi Y, Nazar M, et al. Reverse vaccinology approaches to design a potent multiepitope vaccine against the HIV whole genome: immunoinformatic, bioinformatics, and molecular dynamics approaches. BMC Infectious Diseases. 2024;24(1). doi: 10.1186/s12879-024-09775-2
  5. Moin AT, Rani NA, Patil RB, Robin TB, Ullah MA, Rahim Z, et al. In-silico formulation of a next-generation polyvalent vaccine against multiple strains of monkeypox virus and other related poxviruses. PLOS ONE. 2024;19(5):e0300778. doi: 10.1371/journal.pone.0300778
  6. Ma S, Zhu F, Zhang P, Xu Y, Zhou Z, Yang H, et al. Development of a novel multi-epitope subunit mRNA vaccine candidate to combat Acinetobacter baumannii. Scientific Reports. 2025;15(1). doi: 10.1038/s41598-024-84823-0
  7. Zubair S, Parvaiz F, Abualait T, Al-Regaiey K, Anwar T, Zafar M, et al. Computational design of multi-epitope vaccine against Hepatitis C Virus infection using immunoinformatics techniques. PLOS ONE. 2025;20(1):e0317520. doi: 10.1371/journal.pone.0317520
  8. Mishra SK, Senathilake KS, Kumar N, Patel CN, Uddin MB, Alqahtani T, et al. Exploratory algorithms to devise multi-epitope subunit vaccine by examining HIV-1 envelope glycoprotein: An immunoinformatics and viroinformatics approach. PLOS ONE. 2025;20(2):e0318523. doi: 10.1371/journal.pone.0318523
  9. Almofti YA, Ibrahim AA, Mahmoud NA, Elshafei AM, Ibrahim N, Albokhadaim I, et al. Exploring varicella zoster virus proteome for construction and validation of a multi-epitope based subunit vaccine using multifaceted immunoinformatics approaches. PLOS One. 2025;20(6):e0324453. doi: 10.1371/journal.pone.0324453
  10. Hazra D, Rahman S, Ganguly M, Das AK, Roychowdhury A. Molecular dynamics simulation shows enhanced stability in scaffold-based macromolecule, designed by protein engineering: a novel methodology adapted for converting Mtb Ag85A to a multi-epitope vaccine. Journal of Molecular Modeling. 2025;31(3). doi: 10.1007/s00894-025-06301-2
  11. Nonog ZL, Banico EC, Sajo M, Serrano PV, Orosco FL. Design and evaluation of a multi-epitope subunit vaccine against human norovirus using an immunoinformatics approach. Osong Public Health and Research Perspectives. 2025;16(3):236. doi: 10.24171/j.phrp.2024.0349
  12. Ali L, Rauf S, Khan A, Rasool S, Raza RZ, Alshabrmi FM, et al. In silico design of multi-epitope vaccines against the hantaviruses by integrated structural vaccinology and molecular modeling approaches. PLOS ONE. 2024;19(7):e0305417. doi: 10.1371/journal.pone.0305417
  13. Naz H, Timotheous R, Sarwar MF, Nadeem T, Awan MF, Ali S, et al. Utilizing the subtractive proteomics approach to design ensemble vaccine against Candida lusitaniae for immune response stimulation; a bioinformatics study. PLOS ONE. 2025;20(2):e0316264. doi: 10.1371/journal.pone.0316264
  14. Campos-Ruíz MA, Illades-Aguiar B, Moral-Hernández OD, Romo-Castillo M, Salazar-García M, Espinoza-Rojo M, et al. Immunized mice naturally process in silico-derived peptides from the nucleocapsid of SARS-CoV-2. BMC Microbiology. 2023;23(1). doi: 10.1186/s12866-023-03076-5
  15. Ezediuno LO, Ockiya MA, David KB, Awoniyi LO, Robert FO, Oladipo EK, et al. Virtual Discovery of Immune-Stimulating Epitopes in Chikungunya Virus for Vaccine Design. EMJ Microbiology & Infectious Diseases. 2024;. doi: 10.33590/emjmicrobiolinfectdis/RZNV7904
  16. Samman N, Mohabatkar H, Behbahani M, Hakemi MG, Gong W. Bioinformatics design of a peptide vaccine containing sarcoma antigen NY-SAR-35 epitopes against breast cancer and evaluation of its immunological function in BALB/c mouse model. PLOS ONE. 2024;19(6):e0306117. doi: 10.1371/journal.pone.0306117
  17. Han W, Zhou R, Wang R, Dong Y, Muhammad Z, Wang B, et al. Computer-aided drug design for the double-membrane vesicle pore complex inhibitors against SARS-CoV-2. Frontiers in Microbiology. 2025;16. doi: 10.3389/fmicb.2025.1562187
  18. Masum M, Mahdeen AA, Barua A. Revolutionizing Chikungunya Vaccines: mRNA Breakthroughs With Molecular and Immune Simulations. Bioinformatics and Biology Insights. 2025;19. doi: 10.1177/11779322251324859
  19. Nahian M, Khan MR, Rahman F, Reza HM, Bayil I, Nodee TA, et al. Immunoinformatic strategy for developing multi-epitope subunit vaccine against Helicobacter pylori. PLOS ONE. 2025;20(2):e0318750. doi: 10.1371/journal.pone.0318750
  20. Sarfraz A, Wara TU, Sheheryar , Chen K, Ansari SH, Zaman A, et al. Structural informatics approach for designing an epitope-based vaccine against the brain-eating Naegleria fowleri. Frontiers in Immunology. 2023;14. doi: 10.3389/fimmu.2023.1284621
  21. Al-Zayadi F, Shakir AS, Kareem AS, Ghasemian A, Behmard E. Design of a novel multi-epitope vaccine against Marburg virus using immunoinformatics studies. BMC Biotechnology. 2024;24(1). doi: 10.1186/s12896-024-00873-2
  22. Rahman MM, Masum M, Parvin R, Das SC, Talukder A, Moin AT. Designing of an mRNA vaccine against high-risk human papillomavirus targeting the E6 and E7 oncoproteins exploiting immunoinformatics and dynamic simulation. PLOS ONE. 2025;20(1):e0313559. doi: 10.1371/journal.pone.0313559
  23. Zhang M, Sang J, Yang C, Liu H, Xiao Y, Li J, et al. Cone-Beam Computed Tomography and Magnetic Resonance Imaging in Temporomandibular Joint Disorder Diagnosis: A Comparative Study. Journal of Multidisciplinary Healthcare. 2025;Volume 18:3793. doi: 10.2147/JMDH.S521279
  24. Sarker A, Rahman MM, Khatun C, Barai C, Roy N, Aziz MA, et al. In Silico design of a multi-epitope vaccine for Human Parechovirus: Integrating immunoinformatics and computational techniques. PLOS ONE. 2024;19(12):e0302120. doi: 10.1371/journal.pone.0302120
  25. Cao Q, Fang H, Tian H. mRNA vaccines contribute to innate and adaptive immunity to enhance immune response in vivo. Biomaterials. 2024;310:122628. doi: 10.1016/j.biomaterials.2024.122628
  26. Zafar S, Bai Y, Muhammad SA, Guo J, Khurram H, Zafar S, et al. Molecular dynamics simulation based prediction of T-cell epitopes for the production of effector molecules for liver cancer immunotherapy. PLOS ONE. 2025;20(1):e0309049. doi: 10.1371/journal.pone.0309049
  27. Alam S, Mir SA, Samanta A, Nayak B, Ali S, Hoque M. Immunoinformatics based designing of a multi-epitope cancer vaccine targeting programmed cell death ligand 1. Scientific Reports. 2025;15(1). doi: 10.1038/s41598-025-87063-y
  28. Albutti A. An Integrated Approach to Develop a Potent Vaccine Candidate Construct Against Prostate Cancer by Utilizing Machine Learning and Bioinformatics. Cancer Reports. 2024;7(12). doi: 10.1002/cnr2.70079
  29. Macchia I, Sorsa VL, Ciervo A, Ruspantini I, Negri D, Borghi M, et al. T Cell Peptide Prediction, Immune Response, and Host–Pathogen Relationship in Vaccinated and Recovered from Mild COVID-19 Subjects. Biomolecules. 2024;14(10):1217. doi: 10.3390/biom14101217
  30. Jiang D, Ma Z, Zhang J, Sun Y, Bai T, Liu R, et al. Immunoreactivity Analysis of MHC-I Epitopes Derived from the Nucleocapsid Protein of SARS-CoV-2 via Computation and Vaccination. Vaccines. 2024;12(11):1214. doi: 10.3390/vaccines12111214
  31. Zubair A, Al-Emam A, Ali M, Hussain SM, Elmagzoub RM, Muhammad K. Targeting HIV-1 conserved regions: An immunoinformatic pathway to vaccine innovation for the Asia. PLOS ONE. 2025;20(3):e0317382. doi: 10.1371/journal.pone.0317382
  32. Zhu X, Wang X, Liu T, Zhang D, Jin T. Design of multi-epitope vaccine against porcine rotavirus using computational biology and molecular dynamics simulation approaches. Virology Journal. 2024;21(1). doi: 10.1186/s12985-024-02440-9
  33. Zhu Y, Shi J, Wang Q, Zhu Y, Li M, Tian T, et al. Novel dual-pathogen multi-epitope mRNA vaccine development for Brucella melitensis and Mycobacterium tuberculosis in silico approach. PLOS ONE. 2024;19(10):e0309560. doi: 10.1371/journal.pone.0309560
  34. Wang T, Chen Y, Liu Z. Application value of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in predicting stress ulcer after acute cerebral hemorrhage surgery. Clinical Neurology and Neurosurgery. 2024;246:108557. doi: 10.1016/j.clineuro.2024.108557
  35. Zhang W, Zhang Y, Yang X, Chai H. Harnessing State-of-the-Art Gene Therapy to Transform Oral Cancer Treatment. Biochemical Genetics. 2025;. doi: 10.1007/s10528-025-11078-3
  36. Sahoo PS, Burra VP. Evaluating the 3D structure prediction tools to identify optimal MEBPVC structure models. Computational and Structural Biotechnology Reports. 2024;1:100010. doi: 10.1016/j.csbr.2024.100010
  37. Song Z, Tao Y, You J. The potential applications of peptide-loading complex in cancer treatment. Frontiers in Immunology. 2025;16. doi: 10.3389/fimmu.2025.1526137
  38. Banico EC, Sira E, Fajardo LE, Dulay A, Odchimar N, Simbulan AM, et al. Advancing one health vaccination: In silico design and evaluation of a multi-epitope subunit vaccine against Nipah virus for cross-species immunization using immunoinformatics and molecular modeling. PLOS ONE. 2024;19(9):e0310703. doi: 10.1371/journal.pone.0310703
  39. Nugraha MF, Changestu DA, Ramadhan R, Salsabila T, Nurizati A, Pratiwi SE, et al. Novel prophylactic and therapeutic multi-epitope vaccine based on Ag85A, Ag85B, ESAT-6, and CFP-10 of Mycobacterium tuberculosis using an immunoinformatics approach. Osong Public Health and Research Perspectives. 2024;15(4):286. doi: 10.24171/j.phrp.2024.0026
  40. Soorki MN. In silico antiviral effect assessment of some venom gland peptides from Odontobuthus doriae scorpion against SARS-CoV-2. Toxicon. 2025;255:108229. doi: 10.1016/j.toxicon.2025.108229

Dimensions

Article Metrics

Metrics Loading ...

PlumX