FLOWERING INITIATION GENES DETERMINE THE NODE FOR INFLORENCE-EAR IN ZEA MAYS L.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The expression profile of key genes regulating flowering initiation (ID1, DLF1, ZCN6, ZCN7 and ZCN8) of Zea mays L. was determined in the leaf axils of the reproductive and adjacent nodes during the flowering initiation. The similarity of the inter-node dynamics of the ID1, DLF1, ZCN7 and ZCN8 gene expression was shown throughout the entire measurement period. It was determined that ~10 days before visual detection of the inflorescence meristem, the expression of the flowering activator genes ID1, DLF1, ZCN7 and ZCN8 significantly increased in the reproductive node compared to the adjacent nodes, while the flowering inhibitor gene ZCN6 expression decreased to trace values ​at all nodes.

About the authors

D. Kh. Arkhestova

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences; Institute of Agriculture – branch of the Kabardino-­Balkarian Scientific Center of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Moscow, Russian Federation; Nalchik, Russian Federation

E. Z. Kochieva

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences; Biological Faculty, Moscow State University

Author for correspondence.
Email: shchennikova@yandex.ru
Moscow, Russian Federation; Moscow, Russian Federation

A. V. Shchennikova

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Moscow, Russian Federation

References

  1. Bortiri E., Hake S. // J. Exp. Bot. 2007. V. 58(5). P. 909–916.
  2. Mascheretti I., Turner K., Brivio R. S., et al. // Plant Physiol. 2015. V. 168. P. 1351–1363.
  3. Matsuoka Y., Vigouroux Y., Goodman M. M., et al. // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 6080–6084.
  4. Bonnett O. T. // Science. 1954. V. 120(3107). P. 77–87.
  5. Meng X., Muszynski M. G., Danilevskaya O. N. // Plant Cell. 2011. V. 23. P. 942–960.
  6. Corbesier L., Vincent C., Jang S., et al. // Science. 2007. V. 316. P. 1030–1033.
  7. Lazakis C. M., Coneva V., Colasanti J. // J. Exp. Bot. 2011. V. 62. P. 4833–4842.
  8. Danilevskaya O. N., Meng X., Ananiev E. V. // Plant Physiol. 2010. V. 153(1). P. 238–251.
  9. Colasanti J., Tremblay R., Wong A. Y., et al. // BMC Genomics. 2006. V. 7. P. 158.
  10. Danilevskaya O. N., Meng X., Selinger D. A., et al. // Plant Physiol. 2008. V. 147. P. 2054–2069.
  11. Tsuji H., Sato M. // Plant Cell Physiol. 2024. V. 65(3). P. 322–337.
  12. Wang Z., Yang R., Devisetty U. K., et al. // Front. Plant Sci. 2017. V. 8. P. 697.
  13. Ho W. W., Weigel D. // Plant Cell. 2014. V. 26. P. 552–564.
  14. Hanzawa Y., Money T., Bradley D. // Proc. Natl. Acad. Sci. U.S.A. 2005. V. 102. P. 7748–7753.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences