Optical sensor based on nano-carbon

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibility of creating an optical sensor based on carbon nanoparticles used to amplify the Raman signal is discussed. Carbon nanotubes or graphene flakes can be used as reinforcement. This possibility is confirmed by the results of an experiment demonstrating the signal enhancement effect (SERS) when using carbon nanotubes. The possibility of using graphene flakes for this purpose is confirmed by experimental results indicating the presence of plasmonic oscillations in these objects, necessary for the implementation of the SERS effect.

Texto integral

Acesso é fechado

Sobre autores

G. Bocharov

National Research University “Moscow Power Engineering Institute”

Email: Eletskii@mail.ru
Rússia, Moscow

A. Dedov

National Research University “Moscow Power Engineering Institute”

Email: Eletskii@mail.ru

Corresponding Member of the RAS

Rússia, Moscow

A. Eletskii

National Research University “Moscow Power Engineering Institute”

Autor responsável pela correspondência
Email: Eletskii@mail.ru
Rússia, Moscow

M. Zverev

National Research University “Moscow Power Engineering Institute”

Email: Eletskii@mail.ru
Rússia, Moscow

A. Sarychev

Institute of Theoretical and Applied Electrodynamics of the Russian Academy of Sciences

Email: Eletskii@mail.ru
Rússia, Moscow

S. Fedorovich

National Research University “Moscow Power Engineering Institute”

Email: Eletskii@mail.ru
Rússia, Moscow

Bibliografia

  1. Fleischmann M., Hendra P.J., McQuillan A.J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode // Chemical Physics Letters. 1974. V. 26. №. 2. P. 163–166. https://doi.org/10.1016/0009-2614(74)85388-1
  2. Moskovits M. Surface-enhanced spectroscopy // Rev. Mod. Phys. 1985. V. 57. P. 783. https://doi.org/10.1103/RevModPhys.57.783
  3. Nabiev I.R., Efremov R.G., Chumanov G.D. Surface-enhanced Raman scattering and its application to the study of biological molecules // Sov. Phys. Usp. 1988. V. 31. P. 241–262. https://doi.org/10.1070/PU1988v031n03ABEH005720
  4. Pilot R., Signorini R., Durante C., Orian L., Bhamidipati M., Fabris L.A. Review on Surface-Enhanced Raman Scattering // Biosensors. 2019. V. 9. № 2. P. 57. https://doi.org/10.3390/bios9020057
  5. Bantz K.C., Meyer A.F., Wittenberg N.J., Im H., Kurtuluş Ö., Lee S.H., Lindquist N.C., Oh S.-H., Haynes C.L. Recent Progress in SERS Biosensing // Phys. Chem. Chem. Phys. 2011. V. 13. № . 24. P. 11551. https://doi.org/10.1039/c0cp01841d
  6. Nie S., Emory S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering // Science. 1997. V. 275. P. 1102. https://doi.org/10.1126/science.275.5303.1102
  7. Kneipp K., Wang Y., Kneipp H., Perelman L.T., Itzkan I., Dasari R.R., Feld M.S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) // Phys. Rev. Lett. 1997. V. 78. P. 1667. https://doi.org/10.1103/PhysRevLett.78.1667
  8. Eletskii A.V., Sarychev A.K., Boginskaya I.A., Bocharov G.S., Gaiduchenko I.A., Egin M.S., Ivanov A.V., Kurochkin I.N., Ryzhikov I.A., Fedorov G.E. Amplification of a Raman Scattering Signal by Carbon Nanotubes // Dokl. Phys. 2018. V. 63. P. 496–498. https://doi.org/10.1134/S1028335818120066
  9. Kukushkin V.I., Van’kov A.B., Kukushkin I.V. Long-range manifestation of surface-enhanced Raman scattering // Jetp Lett. 2013. V. 98. P. 64–69. https://doi.org/10.1134/S0021364013150113
  10. Afanas’ev V.P., Bocharov G.S., Gryazev A.S., Eletskii A.V., Kaplya P.S., Ridzel O.Yu. Reduced graphene oxide studied by X-ray photoelectron spectroscopy: evolution of plasmon mode // J. of Physics: Conf. Series. 2018. V. 1121. P. 012001. https://doi.org/10.1088/1742-6596/1121/1/012001

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Raman spectrum of water in the absence of CNTs (1); Raman spectrum of water in the presence of CNTs synthesized using type A catalyst (2); Raman spectra of water in the presence of CNTs synthesized using type B catalyst (3) [8].

Baixar (36KB)
3. Fig. 2. Dependence of conductivity (1) and plasmon peak intensity (2) of thermally reduced graphene oxide on heat treatment temperature [10].

Baixar (33KB)
4. Fig. 3. Schematic representation of the optical sensor configuration: 1 – optical waveguide; 2 – carbon nanoparticles; 3 – object under study; 4 – laser beam; 5 – scattered signal.

Baixar (21KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025