Multi-vortices and lower bounds for the attractor dimension of 2d Navier-Stokes equations

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A new method for obtaining lower bounds for the dimension of attractors for the Navier–Stokes equations, which does not use Kolmogorov flows, is presented. Using this method, exact estimates of the dimension are obtained for the case of equations on a plane with Ekman damping. Similar estimates were previously known only for the case of periodic boundary conditions. In addition, similar lower bounds are obtained for the classical Navier–Stokes system in a two-dimensional bounded domain with Dirichlet boundary conditions.

Авторлар туралы

A. Kostianko

Zhejiang Normal University; HSE University

Хат алмасуға жауапты Автор.
Email: a.kostianko@imperial.ac.uk

Department of Mathematics

Ресей, Zhejiang; Nizhny Novgorod

A. Ilyin

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences; HSE University

Email: ilyin@keldysh.ru
Ресей, Moscow; Nizhny Novgorod

D. Stone

University of Surrey

Email: d.stonc@surrey.ac.uk

Department of Mathematics  

Ұлыбритания, Guildford

S. Zelik

Zhejiang Normal University; University of Surrey; Keldysh Institute of Applied Mathematics, Russian Academy of Sciences;
HSE University

Email: s.zelik@surrey.ac.uk

Department of Mathematics, Department of Mathematics

Ресей, Zhejiang, China; Guildford, UK; Moscow; Nizhny Novgorod

Әдебиет тізімі

  1. Бабин А.В., Вишик М.И. Аттракторы эволюционных уравнений. M.: Наука, 1989.
  2. Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed. New York: Springer-Verlag, 1997.
  3. Ilyin A.A., Miranville A., Titi E.S. Small viscosity sharp estimates for the global attractor of the 2-D damped/driven Navier–Stokes equations // Commun. Math. Sci. 2004. V. 2. P. 403–426.
  4. Ilyin A.A., Patni K., Zelik S.V. Upper bounds for the attractor dimension of damped Navier–Stokes equations in R2 // Discrete Contin. Dyn. Syst. 2016 V. 36. N 4. P. 2085–2102.
  5. Zelik S.V. Attractors. Then and Now // Успехи математических наук. 2023. V. 78. N 4. P. 53–198.
  6. Liu V.X. A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier–Stokes equations // Comm. Math. Phys. 1993. V. 158. P. 327–339.
  7. Мешалкин Л.Д., Синай Я.Г. Исследование устойчивости стационарного решения одной системы уравнений плоского движения несжимаемой вязкой жидкости // Прикладная мат. мех. 1961. Т. 25. С. 1140–1143.
  8. Vishik M.M. Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I arXiv:1805.09426 and Part 2 arXiv:1805.09440, 2018.
  9. Albritton D., Brué E., Colombo M. Non-uniqueness of Leray solutions of the forced Navier–Stokes equations // Ann. Math. (2) 2022. V. 196. N 1. P. 415–455.
  10. Mielke A., Zelik S.V. Multi-Pulse Evolution and Space-Time Chaos in Dissipative Systems // Mem. Amer. Math. Soc. 2009. V. 198. N 925. 97 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024