ON THE DETERMINISM OF PATHS ON SUBSTITUTION COMPLEXES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The work is devoted to the study of the combinatorial properties of determinism for a family of substitution complexes consisting of quadrangles glued together side-to-side. These properties are useful in constructing algebraic structures with a finite number of defining relations. In particular, this method was used to construct a finitely defined infinite nilsemigroup satisfying the identity x9 = 0. This construction solves the problem of L.N. Shevrin and M.V. Sapir. In this paper, we study the possibility of coloring the entire family of complexes in a finite number of colors, for which the weak determinism property is satisfied: if the colors of the three vertices of a certain quadrilateral are known, then the color of the fourth side is uniquely determined, except in some cases of a special arrangement of the quadrilateral. Even weak determinism is enough to construct a finitely defined nilsemigroup; when using this construction, the proof is reduced in scope. The properties of determinism were studied earlier within the framework of the theory of tessellations; in particular, Kari and Papasoglu constructed a set of square tiles that allowed only aperiodic tessellations of the plane and had determinism: the colors of the two adjacent edges were uniquely determined by the colors of the two remaining edges.

Sobre autores

I. Ivanov-Pogodaev

Moscow Institute of Physics and Technology

Moscow, Russia

Bibliografia

  1. Wang Hao. Proving theorems by pattern recognition—II, Bell System Tech. Journal 40(1):1-41, 1961.
  2. Berger R., The undecidability of the domino problem, Ph.D. thesis, Harvard University, July 1964.
  3. Mozes S. Tilings, substitution systems and dynamical systems generated by them., J. Analyse Math 53 (1989), no. 1, 139-186.
  4. Goodman-Strauss C. Matching rules and substitution tilings. Ann. of Math. (2) 147 (1998), no. 1, 181-223. 41-82.
  5. Robinson R.M., Undecidability and nonperiodicity for tilings of the plane, Inventiones Mathematicae 12 (1971), 177-209.
  6. Conway J., Lagarias J. Tiling with polyminoes and combinatorial group theory./ J. Combin. Theory Ser. A. 1990. V. 53, 2, 183-208.
  7. Grunbaum B., Shephard G.C. Tilings and patterns, Freemann, NY 1986.
  8. Свердловская тетрадь: Нерешенные задачи теории полугрупп. Выпуск 3, 1989. — 40 с.
  9. Kari J, Papasoglu. Deterministic aperiodic tile sets. GAFA, Geom. funct. anal. Vol. 9 (1999) 353-369.
  10. Иванов-Погодаев И.А., Канель-Белов А.Я. Конечно определенная нильполугруппа: комплексы с равномерной эллиптичностью, Изв. РАН. Сер. матем., 2021, том 85, выпуск 6, страницы 126-163.
  11. Иванов-Погодаев И.А., Канель-Белов А.Я. Детерминированная раскраска семейства комплексов // Фундамент. и прикл. матем., 24:2 (2022), 37-180.
  12. Белов-Канель А.Я., Иванов-Погодаев И.А., Конструкция бесконечной конечно определенной нильполугруппы, Доклады РАН. Математика, информатика, процессы управления, 101:2 (2020), 81-85.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025