Математическое моделирование плавления вольфрама при воздействии лазерного импульса
- Авторы: Лазарева Г.Г.1, Аракчеев А.С.2, Попов В.А.2
-
Учреждения:
- Российский университет дружбы народов
- Федеральное государственное бюджетное учреждение науки Институт ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук
- Выпуск: Том 509, № 1 (2023)
- Страницы: 101-105
- Раздел: ИНФОРМАТИКА
- URL: https://medjrf.com/2686-9543/article/view/647929
- DOI: https://doi.org/10.31857/S2686954322600537
- EDN: https://elibrary.ru/CQCAYT
- ID: 647929
Цитировать
Аннотация
Работа посвящена математическому моделированию процесса плавления в образце под воздействием импульсной тепловой нагрузки на основе решения двухфазной задачи Стефана. Численная модель основана на подходе Самарского, что позволяет не выделять свободную границу во время расчета. Учет аксиально-симметричной геометрии позволил показать, что на испарение расходуется около четверти падающей энергии в центре области расплава. Это в пять раз больше, чем дают оценки, основанные на решении одномерного уравнения теплопроводности. В случае учета испарения вещества получено хорошее соответствие расчетных и экспериментальных температуры остывающей поверхности и скорости сужения области расплава. Результаты математического моделирования подтвердили существование режима охлаждения испарением при нагреве вольфрама электронным пучком существенно выше порога плавления.
Ключевые слова
Об авторах
Г. Г. Лазарева
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: lazarevanovosibirsk@gmail.com
Россия, Москва
А. С. Аракчеев
Федеральное государственное бюджетное учреждение науки Институт ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук
Автор, ответственный за переписку.
Email: asarakcheev@gmail.com
Россия, Новосибирск
В. А. Попов
Федеральное государственное бюджетное учреждение науки Институт ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук
Автор, ответственный за переписку.
Email: v.a.popov94@gmail.com
Россия, Новосибирск
Список литературы
- Carpentier-Chouchana S., Hirai T., Escourbiac F., Durocher A., Fedosov A., Ferrand L., Firdaouss M., Kocan M., Kukushkin A.S., Jokinen T., Komarov V., Lehnen M., Merola M., Mitteau R., Pitts R.A., Stangeby P.C., Sugihara M., “Status of the ITER full-tungsten divertor shaping and heat load distribution analysis” Physica Scripta, T. 159, 014002, 2014.
- Shi Y., Miloshevsky G., Hassanein A., “Boiling induced macroscopic erosion of plasma facing components in fusion” Fusion Engineering and Design, Т. 86(2–3), p. 155–162, 2011.
- Huber A., Arakcheev A., Sergienko G., Steudel I., Wirtz M., Burdakov A.V., Coenen J.W., Kreter A., Linke J., Mertens Ph., Philipps V., Pintsuk G., Reinhart M., Samm U., Shoshin A., Schweer B., Unterberg B., Zlobinski M., “Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten” Physica Scripta, T. 159, 014005, 2014.
- Safronov V.M., Arkhipov N.I., Klimov N.S., Landman I.S., Petrov D.S., Podkovyrov V.L., Poznyak I.M., Toporkov D.A., Zhitlukhin A.M. , “Investigation of erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to ELMS and mitigated disruptions in ITER” Problems of Atomic Science and Technology. Series: Plasma Physics (14), pp. 52–54, 2008.
- Huber A., Burdakov A., Zlobinski M., Wirtz M., Coenen J. W., Linke J.,. Mertens Ph, Philipps V., Pintsuk G., Schweer B., Sergienko G., Shoshin A., Samm U., Unterberg B., “Investigation of the impact on tungsten of transient heat loads induced by laser irradiation, electron beams and plasma guns” Fusion Science and Technology, 63 (1T), pp. 197–200, 2013.
- Vyacheslavov L., Arakcheev A., Burdakov A., Kandaurov I., Kasatov A., Kurkuchekov V., Mekler K., Popov V., Shoshin A., Skovorodin D., Trunev Y., Vasilyev A. Novel electron beam based test facility for observation of dynamics of tungsten erosion under intense ELM-like heat loads, AIP Conference Proceedings, 1771, 060004 (2016).
- Apushkinskaya D. Free boundary problems: Regularity properties near the fixed boundary, Lecture Notes in Mathematics, 2218. Springer (2018).
- Trunev Yu.A., Arakcheev A.S., Burdakov A.V., Kandaurov I.V., Kasatov A.A., Kurkuchekov V.V., Mekler K.I., Popov V.A., Shoshin A.A., Skovorodin D.I., Vasilyev A.A., Vyacheslavov L.N., Heating of tungsten target by intense pulse electron beam, AIP Conference Proceedings 1771, 060016 (2016).
- Самарский А.А., Вабищевич П.Н. Вычислительная теплопередача // М.: Едиториал УРСС, 2003, 784 с.
- Яненко Н.Н., Метод дробных шагов решения многомерных задач математической физики // Новосибирск, 1967. 196 с.
- Davis J.W., Smith P.D., ITER material properties handbook, J. Nucl. Mater. 233 (1996) 1593–1596.
- Ho C.Y., Powell R.W., Liley P.E. Thermal conductivity of elements, Journal of Physical and Chemical Reference Data, 1, p. 279 (1972).
- Талуц С.Г. Экспериментальное исследование теплофизических свойств переходных металлов и сплавов на основе железа при высоких температурах: Автореф. дис. д-ра физ.-мат. наук: 01.04.14, Екатеринбург: 2001. 38 с.
- Arakcheev A.S., Apushkinskaya D.E., Kandaurov I.V., Kasatov A.A., Kurkuchekov V.V., Lazareva G.G., Maksimova A.G., Popov V.A., Snytnikov A.V., Trunev Yu.A., Vasilyev A.A., Vyacheslavov L.N. Two-dimensional numerical simulation of tungsten melting under pulsed electron beam, Fusion Engineering and Design, vol. 132, p. 13–17 (2018).
- Vasilyev A.A., Arakcheev A.S., Bataev I.A., Bataev V.A., Burdakov A.V., Kandaurov I.V., Kasatov A.A., Kurkuchekov V.V., Mekler K.I., Popov V.A., Shoshin A.A., Skovorodin D.I., Trunev Yu.A., Vyacheslavov L.N., In-situ imaging of tungsten surface modification under ITER-like transient heat loads, Nucl. Matter Energy 12 (2017) 553–558.
