Influence of treatment of wheat (Triticum aestivum L.) seedling roots with Azospirillum lectins on resistance to abiotic stress

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is known that growth-stimulating rhizobacteria of the genus Azospirillum have an effect on plant resistance to abiotic stress, but the mechanisms underlying this process remain unclear. The effect of azospirillus lectins on the drought resistance of wheat Triticum aestivum was investigated. The surface lectins of the strains A. brasilense Sp7 and A. baldaniorum Sp245 are able to attach to specific carbohydrates and ensure the binding of bacteria to the surface of the plant root. They are multifunctional, and the effects caused by lectins are dose-dependent. In the roots of wheat seedlings under conditions of arid stress, lectins increased the activity of peroxidase, superoxide dismutase and catalase with varying intensity. Lectins reduced lipid peroxidation, but increased the content of secondary metabolites such as common phenols and flavonoids. In the roots of stressed seedlings, lectins caused a dose-dependent increase in the total protein content and led to a change in the electrophoretic spectra of low-molecular-weight proteins. The results obtained led to the conclusion that the use of lectins can provide an affordable and simple solution to increase crop productivity in conditions of limited water availability.

Full Text

Restricted Access

About the authors

S. A. Alen’kina

Russian Academy of Sciences

Author for correspondence.
Email: s.alenkina@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, prospekt Entuziastov 13, Saratov 410049

М. А. Kupryashina

Russian Academy of Sciences

Email: s.alenkina@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, prospekt Entuziastov 13, Saratov 410049

References

  1. Takahashi F., Kuromori T., Urano K., Yamaguchi-Shinozaki K., Shinozaki K. Drought stress responses and resistance in plants: from cellular responses to long-distance intercellular communication // Front. Plant Sci. 2020. V. 11. P. 556972.
  2. Oguz M.C., Aycan M., Oguz E., Poyraz I., Yildiz M. Drought stress tolerance in plants: interplay of molecular, biochemical and physiological responses in important development stages // Physiologia. 2022. V. 2. P. 180–197.
  3. Puente M.L., Gualpa G.L., Lopez G.A., Molina R.M., Carletti S.M., Cassán F.D. The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model // Symbiosis. 2018. V. 76. P. 41–49.
  4. Bhattacharyya P.N., Jha D.K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture // World J. Microbiol. Biotechnol. 2012. V. 28. P. 1327–1350.
  5. Cassan F., Diaz-Zorita M. Azospirillum sp. in current agriculture: From the laboratory to the field // Soil Biol. Biochem. 2016. V. 103. P. 117–130.
  6. Lana M., Dartora J., Marini D., Hann J. Inoculation with Azospirillum, associated with nitrogen fertilization in maize // Rev. Ceres Viçosa. 2012. V. 59. P. 399–405.
  7. Laus M.C., Logman T.J., Lamers G.E., Van Brussel A.N., Carlson R.W., Kijne J.W. A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin // Mol. Microbiol. 2006. V. 59(6). P. 61704–61713.
  8. Антонюк Л.П., Евсеева Н.В. Лектин пшеницы как фактор растительно-микробной коммуникации и белок стрессового ответа // Микробиология. 2006. Т. 75. № 4. С. 544–549.
  9. Castellanos T., Ascencio F., Bashan Y. Cell-surface lectins of Azospirillum spp. // Curr. Microbiol. 1998. V. 36. P. 241–244.
  10. Никитина В.Е., Пономарева Е.Г., Аленькина С.А. Лектины клеточной поверхности азоспирилл и их роль в ассоциативных взаимоотношениях с растениями // Молекулярные основы взаимоотношений ассоциативных микроорганизмов с растениями / Под ред. В.В. Игнатова. М.: Наука, 2005. С. 70–97.
  11. Alen’kina S.A., Payusova O.A., Nikitina V.E. Effect of Azospirillum lectins on the activities of wheat-root hydrolytic enzymes // Plant and Soil. 2006. V. 283. P. 147–151.
  12. Alen’kina S.A., Bogatyrev V.A., Matora L.Yu., Sokolova M.K., Chernysheva M.P., Trutneva K.A., Nikitina V.E. Signal effects of the lectin from the associative nitrogen-fixing bacterium Azospirillum brasilense Sp7 in bacterial-plant root interactions // Plant and Soil. 2014. V. 381. P. 337–349.
  13. Alen’kina S.А., Romanov N.I., Nikitina V.Е. Regulation by Azospirillum lectins of the activity of antioxidant enzymes in wheat seedling roots under short-term stresses // Brazil. J. Bot. 2018 V. 41. P. 579–587.
  14. Аленькина С.A., Никитина В.Е. Влияние лектинов азоспирилл на активность аскорбатпероксидазы и содержание аскорбиновой кислоты в корнях проростков пшеницы при абиотических стрессах // Прикл. биохим. и микробиол. 2020. Т. 56. № 2. С. 174–181.
  15. Аленькина С.A., Никитина В.Е. Cтимулирующий эффект лектинов ассоциативных бактерий рода Azospirillum на всхожесть и морфометрические характеристики проростков яровой пшеницы при смоделированных абиотических стрессах // Физиология растений. 2021. Т. 68. № 2. С. 1–7.
  16. Хайруллин Р.M., Яруллина Л.Г., Трошина Н.Б., Ахметова И.Э. Активация хитоолигосахаридами окисления орто-фенилендиамина проростками пшеницы в присутствии щавелевой кислоты // Биохимия. 2001. Т. 66. № 3. С. 354–358.
  17. Aebi H. Catalase in vitro // Methods in Enzymology / Ed. Packer L. San Diego: Academic Press, 1984. V. 105. P. 121–126.
  18. Alscher R.G., Erturk N., Heath L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress plants // J. Exp. Bot. 2002. V. 53. P. 1331–1341.
  19. Makkar H.P.S., Siddhuraju P., Becker K. Trypsin inhibitor // Plant Secondary Metabolites. N.J.: Humana Press, Totowa, 2007. V. 393. P. 1–122.
  20. Marinova D., Ribarova F., Atanassova M. Total phenolics and total flavonoids in bulgarian fruits and vegetables // J. Univer. Chem. Technol. Metall. 2005. V. 40. P. 255–260.
  21. Wu H., Wu X., Li Z., Duan L., Zhang M. Physiological evaluation of drought stress tolerance and recovery in cauliflower (Brassica leracea L.) seedlings treated with methyl jasmonate and coronatine // J. Plant Growth Regul. 2012. V. 31. P. 113–123.
  22. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248–254.
  23. Laemmli U.K. Cleavage of structural proteins during the assembly of the read of bacteriophage // Nature. 1970. V. 227(5259). P. 680–685.
  24. Ashraf M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers // Biotechno. Adv. 2009. V. 27. P. 84–93.
  25. Ishikawa T., Takahara K., Hirabayashi T., Matsumura H., Fujisawa S., Terauchi R., Kawai-Yamada M. Metabolome analysis of response to oxidative stress in rice suspension cells overexpressing cell death suppressor Bax inhibitor-1 // Plant Cell Physiol. 2010. V. 51(1). P. 9–20.
  26. Huseynova I.M. Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought // Biochim. Biophys. Acta (BBA)–Bioenerg. 2012. V. 1817(8). P. 1516–1523.
  27. Guidi L., Tattini M. Antioxidant defenses in plants: a dated topic of current interest // Antioxidants. 2021. V. 10(6). P. 855.
  28. Horváth E., Pál M., Szalai G., Páldi E., Janda T. Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short term drought and freezing stress on wheat plants // Biol. Plantarum. 2007. V. 51(3). P. 480–487.
  29. Arzanesh M.H., Alikhani H.A., Khavazi K., Rahimian H.A., Miransari M. In vitro growth of wheat (Triticum aestivum L.) seedlings, inoculated with Azospirillum sp., under drought stress // Inter. J. Bot. 2009. V. 5. P. 244–249.
  30. Darkó É., Fodor J., Dulai S., Ambrus H., Szenzenstein A., Király Z., Barnabás B. Improved cold and drought tolerance of doubled haploid maize plants selected for resistance to prooxidant tert-butyl hydroperoxide // J. Agron. Crop Sci. 2011. V. 197(6). P. 454–465.
  31. Georgiadou E.C., Ntourou T., Goulas V., Manganaris G.A., Kalaitzis P., Fotopoulos V. Temporal analysis reveals a key role for VTE5 in vitamin E biosynthesis in olive fruit during on-tree development // Front. Plant Sci. 2015. V. 6. P. 871.
  32. Ahmad Z., Waraich E.A., Akhtar S., Anjum S., Ahmad T., Mahboob W., Rizwan M. Physiological responses of wheat to drought stress and its mitigation approaches // Acta Physiol. Plantarum. 2018. V. 40(4). P. 80.
  33. Kotak S., Larkindale J., Lee U., von Koskull-Doring P., Vierling E., Scharf K.D. Complexity of the heat stress response in plants // Curr. Opin. Plant Biol. 2007. V. 10. P. 310–316.
  34. Kosmala Ar., Bocian Al., Rapicz M., Jurczyk B., Zwierzykowski Zb. Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct level of frost tolerance // J. Exp. Bot. 2009. V. 60. P. 3595–3609.
  35. Cheng G., Basha E., Wysocki V.H., Vierling E. Insights into small heat shock protein substrate structure during chaperone action derived from hydrogen/deuterium exchange and mass spectrometry // J. Biol. Chem. 2008. V. 283. P. 26634–26642.
  36. Шелудько А.В., Пономарева Е.Г., Варшаломидзе О.Э., Ветчинкина Е.И., Кацы Е.И., Никитина В.Е. Гемагглютинирующая активность и подвижность бактерий Azospirillum brasilense в присутствии разных источников азота // Микробиология. 2009. Т. 78. № 6. С. 749–756.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of A. brasilense Sp7 and A. baldaniorum Sp245 lectins on MDA content in wheat seedling roots under drought: 1 – control, without lectins, 2 – 0.1 mM, 3 – 0.3 mM, 4 – 0.6 mM, 5 – 1.2 mM. Results are presented as arithmetic means ± standard error. Different letters indicate significantly different values ​​(p < 0.05). The same in Figs. 2–3.

Download (26KB)
3. Fig. 2. The effect of lectins A. brasilense Sp7 and A. baldaniorum Sp245 on the content of PS in the roots of wheat seedlings under drought: 1 – control, without lectins, 2 – 0.1 mM, 3 – 0.3 mM, 4 – 0.6 mM, 5 – 1.2 mM.

Download (28KB)
4. Fig. 3. Effect of lectins A. brasilense Sp7 and A. baldaniorum Sp245 on the flavonoid content in the roots of wheat seedlings under drought: 1 – control, without lectins, 2 – 0.1 mM, 3 – 0.3 mM, 4 – 0.6 mM, 5 – 1.2 mM.

Download (27KB)
5. Fig. 4. Effect of A. brasilense Sp7 and A. baldaniorum Sp245 lectins on the electrophoretic spectrum of low-molecular proteins in seedling roots under the influence of drought. M – molecular markers, 1 – control roots, 2 – roots + drought, 3 – roots + drought + A. brasilense Sp7 lectin 0.3 mM, 60 min, 4 – roots + drought + A. baldaniorum Sp245 lectin 0.1 mM, 60 min.

Download (14KB)

Copyright (c) 2025 The Russian Academy of Sciences