Phase Composition and Biocompatibility of Coatings Produced on Ti–6Al–5V Titanium Alloy via Diffusion Saturation with Oxygen, Nitrogen, and Carbon
- 作者: Vende M.F.1,2, Semenov M.Y.2, Vintaikin B.E.2, Smirnov A.E.2, El’chaninova V.A.2, Vinogradov Y.I.2
-
隶属关系:
- AFK Sistema
- Bauman State Technical University
- 期: 卷 59, 编号 10 (2023)
- 页面: 1177-1184
- 栏目: Articles
- URL: https://medjrf.com/0002-337X/article/view/668106
- DOI: https://doi.org/10.31857/S0002337X23100135
- EDN: https://elibrary.ru/CCYIHG
- ID: 668106
如何引用文章
详细
Ti–6Al–5V titanium alloy was subjected to surface saturation with carbon, nitrogen, and oxygen in order to study the effect of surface modification on its wear resistance and biocompatibility. The alloy was saturated with carbon and nitrogen in low-pressure atmospheres. Oxygenation was carried out by heating the alloy in a solid carburizing agent. The structure and phase state of the grown layers were studied by optical microscopy and X-ray diffraction. General trends in the saturation of the titanium alloy with nonmetals are the formation of a diffusion layer and an increase in the amount of phases based on the α-Ti solid solution, followed by the formation of intermediate phases, such as carbides, nitrides, and oxides differing in stoichiometry, on the surface of the continuous layer. After saturation, the alloy was covered with thin carbide, nitride, and oxide surface layers and had diffusion layers under them. The hardness of the nitrogenated and oxygenated surfaces was 950–1000 HV, and that of the surfaces saturated with carbon was 570 HV. The wear resistance of the alloy was lowest in the as-prepared state and highest after oxygenation. Biocompatibility was assessed from the proliferation of osteoblast-like cells of the MG-63 line. The best biocompatibility was demonstrated by the oxygenated samples, and the biocompatibility of the nitrogenated samples was better than that of the carburized samples. The untreated alloy showed the lowest biocompatibility.
作者简介
M. Vende
AFK Sistema; Bauman State Technical University
Email: smirnoff@bmstu.ru
125009, Moscow, Russia; 105005, Moscow, Russia
M. Semenov
Bauman State Technical University
Email: smirnoff@bmstu.ru
105005, Moscow, Russia
B. Vintaikin
Bauman State Technical University
Email: smirnoff@bmstu.ru
105005, Moscow, Russia
A. Smirnov
Bauman State Technical University
Email: smirnoff@bmstu.ru
105005, Moscow, Russia
V. El’chaninova
Bauman State Technical University
Email: smirnoff@bmstu.ru
105005, Moscow, Russia
Yu. Vinogradov
Bauman State Technical University
编辑信件的主要联系方式.
Email: smirnoff@bmstu.ru
105005, Moscow, Russia
参考
- Li Y., Yang C., Zhao H., Qu S., Li X. New Developments of Ti-Based Alloys for Biomedical Applications // Materials. 2014. V. 7. № 3. P. 1709–1800. https://doi.org/10.3390/ma7031709
- Kyzioł K., Kaczmarek Ł., Brzezinka G., Kyzioł A. Structure, Characterization and Cytotoxicity Study on Plasma Surface Modified Ti–6Al–4V and γ-TiAl Alloys // Chem. Eng. J. 2014. V. 240. P. 516–526. https://doi.org/10.1016/j.phytochem.2012.12.001
- Guleryuz H., Cimenoglu H. Oxidation of Ti–6Al–4V Alloy // J. Alloys Compd. 2009. V. 472. № 1–2. P. 241–246. https://doi.org/10.1016/j.jallcom.2008.04.024
- Rodriguez G.M., Bowen J., Zelzer M., Stamboulis A. Selective Modification of Ti6Al4V Surfaces for Biomedical Applications // RSC Adv. 2020. V. 10. № 30. P. 17642–17652. https://doi.org/10.1039/C9RA11000C
- López-Huerta F., Cervantes B., González O., Hernández-Torres J., García-González L., Vega R., Soto E. et al. Biocompatibility and Surface Properties of TiO2 thin Films Deposited by DC Magnetron Sputtering // Materials. 2014. V. 7. № 6. P. 4105–4117. https://doi.org/10.3390/ma7064105
- Козлов Д.А., Тихонова С.А., Евдокимов П.В., Путляев В.И., Гаршев А.В. Стереолитографическая 3D-печать из суспензий, содержащих диоксид титана // Журн. неорган. химии. 2020. Т. 65. № 12. С. 1721–1728. https://doi.org/10.31857/S0044457X20120090
- Ramos-Corella K.J., Sotelo-Lerma M., Gil-Salido A.A., Rubio-Pino J.L., Auciello O., Quevedo-López M.A. Controlling Crystalline Phase of TiO2 Thin Films to Evaluate its Biocompatibility // Mater. Technol. 2019. V. 34. № 8. P. 455-462. https://doi.org/10.1080/10667857.2019.1576821
- Skvortsova S., Orlov A., Valyano G., Spektor V., Mamontova N. Wear Resistance of Ti–6Al–4V Alloy Ball Heads for Use in Implants // J. Funct. Biomater. 2021. V. 12. № 4. P. 65. https://doi.org/10.3390/jfb12040065
- Januszewicz B., Klimek L. Nitriding of Titanium and Ti6Al4V Alloy in Ammonia Gas under Low Pressure // Mater. Sci. Technol. 2010. V. 26. № 5. P. 586–590. https://doi.org/10.1179/174328409X448501
- Duta L., Stan G.E., Popa A.C., Husanu M.A., Moga S., Socol M., Mihailescu I.N. et al. Thickness Influence on in Vitro Biocompatibility of Titanium Nitride Thin Films Synthesized by Pulsed Laser Deposition // Materials. 2016. V. 9. № 1. P. 38. https://doi.org/10.3390/ma9010038
- Banaszek K., Klimek L., Zgorzynska E., Swarzynska A., Walczewska A. Cytotoxicity of Titanium Carbonitride Coatings for Prostodontic Alloys with Different Amounts of Carbon and Nitrogen // Biomed. Mater. 2018. V. 13. № 4. P. 045003. https://doi.org/10.1088/1748-605X/aab942
- Banaszek K., Klimek L., Dąbrowski J.R., Jastrzębski W. Fretting Wear in Orthodontic and Prosthetic Alloys with Ti(C, N) Coatings // Processes. 2019. V. 7. № 12. P. 874. https://doi.org/10.3390/pr7120874
- Seval’nev G.S., Seval’neva T.G., Kolmakov A.G., Dul’nev K.V., Yazvitskii M.Yu. Effect of the Phase Composition of Austenitic–Martensitic VNS9-Sh TRIP Steel on the Characteristics of Dry Sliding Friction in the Tribocontact with ShKh15 Steel // Russ.Metall. (Met.). 2022. № 4. P. 404–410.https://doi.org/10.1134/S0036029522040267
- Гинье А. Рентгенография кристаллов. Теория и практика. М.: Физматгиз, 1961. 604 с.
- Венде М.Ф., Семенов М.Ю., Смирнов А.Е., Пучков Ю.А., Севальнёв Г.С., Виноградов Ю.И. Влияние азотирования и оксидирования на износостойкость и коррозионную стойкость титанового сплава, легированного цирконием // Металловедение и термическая обработка металлов. 2023. № 2(812). С. 21–28.
- Свойства, получение и применение тугоплавких соединений. Справочник / Под ред. Косолаповой Т.Я. М.: Металлургия, 1986. 927 с.
补充文件
