Mechanical Properties of Graded Macroporous Calcium Phosphate Ceramics of Tailored Architecture
- Authors: Evdokimov P.V.1,2, Tikhonova S.A.1, Putlyaev V.I.1
-
Affiliations:
- Moscow State University
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Issue: Vol 59, No 9 (2023)
- Pages: 1053-1059
- Section: Articles
- URL: https://medjrf.com/0002-337X/article/view/668148
- DOI: https://doi.org/10.31857/S0002337X23090051
- EDN: https://elibrary.ru/XOVZYC
- ID: 668148
Cite item
Abstract
This paper reports the mechanical properties of graded macroporous β-Ca3(PO4)2-based ceramic materials produced by stereolithographic 3D printing. We demonstrate the feasibility of using photocurable emulsions for the preparation of ceramic materials with porosity above 80% and controlling the pore size distribution. Graded-porosity ceramic materials with tailored pore size are produced using 3D printing of photocurable tricalcium phosphate-based emulsions. We examine the effect of emulsifier content on the average pore size in ceramic scaffolds with tailored architecture and the effects of porosity, average pore size, and 3D architecture on the strength characteristics of the macroporous ceramic materials.
About the authors
P. V. Evdokimov
Moscow State University; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: pavel.evdokimov@gmail.com
119991, Moscow, Russia; 119991, Moscow, Russia
S. A. Tikhonova
Moscow State University
Email: pavel.evdokimov@gmail.com
119991, Moscow, Russia
V. I. Putlyaev
Moscow State University
Author for correspondence.
Email: pavel.evdokimov@gmail.com
119991, Moscow, Russia
References
- Zhang B., Pei X., Song P., Sun H., Li H., Fan Y., Jiang Q., Zhou Ch., Zhang X. Porous Bioceramics Produced by Inkjet 3D Printing: Effect of Printing Ink Formulation on the Ceramic Macro and Micro Porous Architectures Control // Composites. Part B. 2018. V. 155. P. 112–121. https://doi.org/10.1016/j.compositesb.2018.08.047
- Tang D., Tare R.S., Yang L.-Y., Williams D.F., Ou K.-L., Oreffo R.O.C. Biofabrication of Bone Tissue: Approaches, Challenges and Translation for Bone Regeneration // Biomaterials. 2016. V. 83. P. 363–382. https://doi.org/10.1016/j.biomaterials.2016.01.024
- Hench L.L., Thompson I. Twenty-First Century Challenges for Biomaterials // J. R. Soc. Interface. 2010. V. 7. № 4. P. 379–391. https://doi.org/10.1098/rsif.2010.0151.focus
- Habraken W., Habibovic P., Epple M., Bohner M. Calcium Phosphates in Biomedical Applications: Materials for the Future? // Mater. Today. 2016. V. 19. № 2. P. 69–87. https://doi.org/10.1016/j.mattod.2015.10.008
- Lu J., Yu H., Chen C. Biological Properties of Calcium Phosphate Biomaterials for Bone Repair: A Review // R. Soc. Chem. Adv. 2018. V. 8. № 4. P. 2015–2033. https://doi.org/10.1039/C7RA11278E
- Lu H., Zhou Y., Ma Y., Xiao L., Ji W., Zhang Y., Wang X. Current Application of Beta-Tricalcium Phosphate in Bone Repair and Its Mechanism to Regulate Osteogenesis // Front. Mater. 2021. V. 8. P. 698915. https://doi.org/10.3389/fmats.2021.698915
- Turnbull G., Clarke J., Picard F., Riches P., Jia L., Han F., Li B., Shu W. 3D Bioactive Composite Scaffolds for Bone Tissue Engineering // Bioact. Mater. 2018. V. 3. № 3. P. 278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001
- Albrektsson T., Johansson C. Osteoinduction, Osteoconduction and Osseointegration // Eur. Spine J. 2001. V. 10. P. 96–101. https://doi.org/10.1007/s005860100282
- Chen X., Fan H., Deng X., Wu L., Yi T., Gu L., Zhou C., Fan Y., Zhang X. Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications // Nanomaterials. 2018. V. 8. P. 960. https://doi.org/10.3390/nano8110960
- Jodati H., Yılmaz B., Evis Z. A Review of Bioceramic Porous Scaffolds for Hard Tissue Applications: Effects of Structural Features // Ceram. Int. 2020. V. 46. P. 15725–15739. https://doi.org/10.1016/j.ceramint.2020.03.192
- Cheng Mq., Wahafu T., Jiang Gf., Liu W., Qiao Yu., Peng X., Cheng T., Zhang X., He G., Liu X. A Novel Open-Porous Magnesium Scaffold with Controllable Microstructures and Properties for Bone Regeneration // Sci. Rep. 2016. V. 6. P. 24134. https://doi.org/10.1038/srep24134
- Pei X., Ma L., Zhang B., Sun J., Sun Y., Fan Y., Gou Zh., Zhou Ch., Zhang X. Creating Hierarchical Porosity Hydroxyapatite Scaffolds with Osteoinduction by Three-Dimensional Printing and Microwave Sintering // Biofabrication. 2017. V. 9. № 4. A. 045008. https://doi.org/10.1088/1758-5090/aa90ed
- Zhao C., Xia L., Zhai D., Zhang N., Liu J., Fang B., Chang J., Lin K. Designing Ordered Micropatterned Hydroxyapatite Bioceramics to Promote the Growth and Osteogenic Differentiation of Bone Marrow Stromal Cells // J. Mater. Chem., B. 2015. V. 3. № 6. P. 968–976. https://doi.org/10.1039/C4TB01838A
- Torres-Sanchez C., Norrito M., Almushref F.R., Conway P.P. The Impact of Multimodal Pore Size Considered Independently from Porosity on Mechanical Performance and Osteogenic Behaviour of Titanium Scaffolds // Mater. Sci. Eng., C. 2021. V. 124. P. 112026. https://doi.org/10.1016/j.msec.2021.112026
- Khodaei M., Valanezhad A., Watanabe I. Fabrication and Characterization of Porous β-Tricalcium Phosphate Scaffold for Bone Regeneration // J. Environ. Friend. Mater. 2018. V. 2. № 2. P. 1–4.
- Zhou J., Fan J., Sun G., Zhang J., Liu X., Zhang D., Wang H. Preparation and Properties of Porous Silicon Nitride Ceramics with Uniform Spherical Pores by Improved Pore-Forming Agent Method // J. Alloys Compd. 2015. V. 632. P. 655–660. https://doi.org/10.1016/j.jallcom.2015.01.305
- Jariwala S.H., Lewis G.S., Bushman Z.J., Adair J.H., Donahue H.J. 3D Printing of Personalized Artificial Bone Scaffolds // 3D Print. Addit. Manuf. 2015. V. 2. № 2. P. 56–64. https://doi.org/10.1089/3dp.2015.0001
- Lee J.-B., Maeng W.-Y., Koh Y.-H., Kim H.-E. Porous Calcium Phosphate Ceramic Scaffolds with Tailored Pore Orientations and Mechanical Properties Using Lithography-Based Ceramic 3D Printing Technique // Materials. 2018. V. 11. P. 1711. https://doi.org/10.3390/ma11091711
- Putlyaev V.I., Evdokimov P.V., Safronova T.V., Klimashina E.S., Orlov N.K. Fabrication of Osteoconductive Ca3–xM2x(PO4)2 (M = Na, K) Calcium Phosphate Bioceramics by Stereolithographic 3D Printing // Inorg. Mater. 2017. V. 53. № 5. P. 529–535. https://doi.org/10.1134/S0020168517050168
- Schmidleithner C., Malferrari S., Palgrave R., Bomze D., Schwentenwein M., Kalaskar D.M. Application of High Resolution DLP Stereolithography for Fabrication of Tricalcium Phosphate Scaffolds for Bone Regeneration // Biomed. Mater. 2019. V. 14. № 4. P. 045018. https://doi.org/10.1088/1748-605X/ab279d
- Lim H.-K., Hong S.-J., Byeon S.-J., Chung S.-M., On S.-W., Yang B.-E., Lee J.-H., Byun S.-H. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures // Int. J. Mol. Sci. 2020. V. 21. P. 6942. https://doi.org/10.3390/ijms21186942
- Minas C., Carnelli D., Tervoort E., Studart A.R. 3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics // Adv. Mater. 2016. V. 28. № 45. P. 9993–9999. https://doi.org/10.1002/adma.201603390
- Huang K., Elsayed H., Franchin G., Colombo P. 3D Printing of Polymer-Derived SiOC with Hierarchical and Tunable Porosity // Addit. Manuf. 2020. V. 36. P. 101549. https://doi.org/10.1016/j.addma.2020.101549
- Kleger N., Minas C., Bosshard P., Mattich I., Masania K., Studart A.R. Hierarchical Porous Materials Made by Stereolithographic Printing of Photo-Curable Emulsions // Sci. Rep. 2021. V. 11. P. 22316. https://doi.org/10.1038/s41598-021-01720-6
- Roman-Manso B., Muth J., Gibson L.J., Ruettinger W., Lewis J.A. Hierarchically Porous Ceramics via Direct Writing of Binary Colloidal Gel Foams // ACS Appl. Mater. Interfaces. 2021. V. 13. № 7. P. 8976–8984. https://doi.org/10.1021/acsami.0c22292
- Moore D.G., Barbera L., Masania K., Studart A.R. Three-Dimensional Printing of Multicomponent Glasses Using Phase-Separating Resins // Nat. Mater. 2020. V. 19. P. 212–217. https://doi.org/10.1038/s41563-019-0525-y
Supplementary files
