Mechanical Properties of Graded Macroporous Calcium Phosphate Ceramics of Tailored Architecture

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper reports the mechanical properties of graded macroporous β-Ca3(PO4)2-based ceramic materials produced by stereolithographic 3D printing. We demonstrate the feasibility of using photocurable emulsions for the preparation of ceramic materials with porosity above 80% and controlling the pore size distribution. Graded-porosity ceramic materials with tailored pore size are produced using 3D printing of photocurable tricalcium phosphate-based emulsions. We examine the effect of emulsifier content on the average pore size in ceramic scaffolds with tailored architecture and the effects of porosity, average pore size, and 3D architecture on the strength characteristics of the macroporous ceramic materials.

About the authors

P. V. Evdokimov

Moscow State University; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: pavel.evdokimov@gmail.com
119991, Moscow, Russia; 119991, Moscow, Russia

S. A. Tikhonova

Moscow State University

Email: pavel.evdokimov@gmail.com
119991, Moscow, Russia

V. I. Putlyaev

Moscow State University

Author for correspondence.
Email: pavel.evdokimov@gmail.com
119991, Moscow, Russia

References

  1. Zhang B., Pei X., Song P., Sun H., Li H., Fan Y., Jiang Q., Zhou Ch., Zhang X. Porous Bioceramics Produced by Inkjet 3D Printing: Effect of Printing Ink Formulation on the Ceramic Macro and Micro Porous Architectures Control // Composites. Part B. 2018. V. 155. P. 112–121. https://doi.org/10.1016/j.compositesb.2018.08.047
  2. Tang D., Tare R.S., Yang L.-Y., Williams D.F., Ou K.-L., Oreffo R.O.C. Biofabrication of Bone Tissue: Approaches, Challenges and Translation for Bone Regeneration // Biomaterials. 2016. V. 83. P. 363–382. https://doi.org/10.1016/j.biomaterials.2016.01.024
  3. Hench L.L., Thompson I. Twenty-First Century Challenges for Biomaterials // J. R. Soc. Interface. 2010. V. 7. № 4. P. 379–391. https://doi.org/10.1098/rsif.2010.0151.focus
  4. Habraken W., Habibovic P., Epple M., Bohner M. Calcium Phosphates in Biomedical Applications: Materials for the Future? // Mater. Today. 2016. V. 19. № 2. P. 69–87. https://doi.org/10.1016/j.mattod.2015.10.008
  5. Lu J., Yu H., Chen C. Biological Properties of Calcium Phosphate Biomaterials for Bone Repair: A Review // R. Soc. Chem. Adv. 2018. V. 8. № 4. P. 2015–2033. https://doi.org/10.1039/C7RA11278E
  6. Lu H., Zhou Y., Ma Y., Xiao L., Ji W., Zhang Y., Wang X. Current Application of Beta-Tricalcium Phosphate in Bone Repair and Its Mechanism to Regulate Osteogenesis // Front. Mater. 2021. V. 8. P. 698915. https://doi.org/10.3389/fmats.2021.698915
  7. Turnbull G., Clarke J., Picard F., Riches P., Jia L., Han F., Li B., Shu W. 3D Bioactive Composite Scaffolds for Bone Tissue Engineering // Bioact. Mater. 2018. V. 3. № 3. P. 278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001
  8. Albrektsson T., Johansson C. Osteoinduction, Osteoconduction and Osseointegration // Eur. Spine J. 2001. V. 10. P. 96–101. https://doi.org/10.1007/s005860100282
  9. Chen X., Fan H., Deng X., Wu L., Yi T., Gu L., Zhou C., Fan Y., Zhang X. Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications // Nanomaterials. 2018. V. 8. P. 960. https://doi.org/10.3390/nano8110960
  10. Jodati H., Yılmaz B., Evis Z. A Review of Bioceramic Porous Scaffolds for Hard Tissue Applications: Effects of Structural Features // Ceram. Int. 2020. V. 46. P. 15725–15739. https://doi.org/10.1016/j.ceramint.2020.03.192
  11. Cheng Mq., Wahafu T., Jiang Gf., Liu W., Qiao Yu., Peng X., Cheng T., Zhang X., He G., Liu X. A Novel Open-Porous Magnesium Scaffold with Controllable Microstructures and Properties for Bone Regeneration // Sci. Rep. 2016. V. 6. P. 24134. https://doi.org/10.1038/srep24134
  12. Pei X., Ma L., Zhang B., Sun J., Sun Y., Fan Y., Gou Zh., Zhou Ch., Zhang X. Creating Hierarchical Porosity Hydroxyapatite Scaffolds with Osteoinduction by Three-Dimensional Printing and Microwave Sintering // Biofabrication. 2017. V. 9. № 4. A. 045008. https://doi.org/10.1088/1758-5090/aa90ed
  13. Zhao C., Xia L., Zhai D., Zhang N., Liu J., Fang B., Chang J., Lin K. Designing Ordered Micropatterned Hydroxyapatite Bioceramics to Promote the Growth and Osteogenic Differentiation of Bone Marrow Stromal Cells // J. Mater. Chem., B. 2015. V. 3. № 6. P. 968–976. https://doi.org/10.1039/C4TB01838A
  14. Torres-Sanchez C., Norrito M., Almushref F.R., Conway P.P. The Impact of Multimodal Pore Size Considered Independently from Porosity on Mechanical Performance and Osteogenic Behaviour of Titanium Scaffolds // Mater. Sci. Eng., C. 2021. V. 124. P. 112026. https://doi.org/10.1016/j.msec.2021.112026
  15. Khodaei M., Valanezhad A., Watanabe I. Fabrication and Characterization of Porous β-Tricalcium Phosphate Scaffold for Bone Regeneration // J. Environ. Friend. Mater. 2018. V. 2. № 2. P. 1–4.
  16. Zhou J., Fan J., Sun G., Zhang J., Liu X., Zhang D., Wang H. Preparation and Properties of Porous Silicon Nitride Ceramics with Uniform Spherical Pores by Improved Pore-Forming Agent Method // J. Alloys Compd. 2015. V. 632. P. 655–660. https://doi.org/10.1016/j.jallcom.2015.01.305
  17. Jariwala S.H., Lewis G.S., Bushman Z.J., Adair J.H., Donahue H.J. 3D Printing of Personalized Artificial Bone Scaffolds // 3D Print. Addit. Manuf. 2015. V. 2. № 2. P. 56–64. https://doi.org/10.1089/3dp.2015.0001
  18. Lee J.-B., Maeng W.-Y., Koh Y.-H., Kim H.-E. Porous Calcium Phosphate Ceramic Scaffolds with Tailored Pore Orientations and Mechanical Properties Using Lithography-Based Ceramic 3D Printing Technique // Materials. 2018. V. 11. P. 1711. https://doi.org/10.3390/ma11091711
  19. Putlyaev V.I., Evdokimov P.V., Safronova T.V., Klimashina E.S., Orlov N.K. Fabrication of Osteoconductive Ca3–xM2x(PO4)2 (M = Na, K) Calcium Phosphate Bioceramics by Stereolithographic 3D Printing // Inorg. Mater. 2017. V. 53. № 5. P. 529–535. https://doi.org/10.1134/S0020168517050168
  20. Schmidleithner C., Malferrari S., Palgrave R., Bomze D., Schwentenwein M., Kalaskar D.M. Application of High Resolution DLP Stereolithography for Fabrication of Tricalcium Phosphate Scaffolds for Bone Regeneration // Biomed. Mater. 2019. V. 14. № 4. P. 045018. https://doi.org/10.1088/1748-605X/ab279d
  21. Lim H.-K., Hong S.-J., Byeon S.-J., Chung S.-M., On S.-W., Yang B.-E., Lee J.-H., Byun S.-H. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures // Int. J. Mol. Sci. 2020. V. 21. P. 6942. https://doi.org/10.3390/ijms21186942
  22. Minas C., Carnelli D., Tervoort E., Studart A.R. 3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics // Adv. Mater. 2016. V. 28. № 45. P. 9993–9999. https://doi.org/10.1002/adma.201603390
  23. Huang K., Elsayed H., Franchin G., Colombo P. 3D Printing of Polymer-Derived SiOC with Hierarchical and Tunable Porosity // Addit. Manuf. 2020. V. 36. P. 101549. https://doi.org/10.1016/j.addma.2020.101549
  24. Kleger N., Minas C., Bosshard P., Mattich I., Masania K., Studart A.R. Hierarchical Porous Materials Made by Stereolithographic Printing of Photo-Curable Emulsions // Sci. Rep. 2021. V. 11. P. 22316. https://doi.org/10.1038/s41598-021-01720-6
  25. Roman-Manso B., Muth J., Gibson L.J., Ruettinger W., Lewis J.A. Hierarchically Porous Ceramics via Direct Writing of Binary Colloidal Gel Foams // ACS Appl. Mater. Interfaces. 2021. V. 13. № 7. P. 8976–8984. https://doi.org/10.1021/acsami.0c22292
  26. Moore D.G., Barbera L., Masania K., Studart A.R. Three-Dimensional Printing of Multicomponent Glasses Using Phase-Separating Resins // Nat. Mater. 2020. V. 19. P. 212–217. https://doi.org/10.1038/s41563-019-0525-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (64KB)
3.

Download (3MB)
4.

Download (106KB)
5.

Download (2MB)

Copyright (c) 2023 П.В. Евдокимов, С.А. Тихонова, В.И. Путляев