Scintillating Screen Based on Fine-Particle Bi4Ge3O12 for Alpha-Radiation Detection
- Authors: Volodin V.D.1, Veselova V.O.2, Egorysheva A.V.2
-
Affiliations:
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Issue: Vol 59, No 9 (2023)
- Pages: 1067-1075
- Section: Articles
- URL: https://medjrf.com/0002-337X/article/view/668155
- DOI: https://doi.org/10.31857/S0002337X23090166
- EDN: https://elibrary.ru/HACZMG
- ID: 668155
Cite item
Abstract
In this paper, we report the first Bi4Ge3O12-based thin-layer alpha radiation detector. The scintillator was immobilized on a fused silica substrate via pulsed laser irradiation of BGO powder consisting of submicron particles. Laser treatment conditions were shown to influence the morphology and kinetic characteristics of the scintillator. The material we prepared ensures a higher stability of detectors to moisture and air in comparison with its commercially available analogs, while offering a comparable or even higher detection efficiency, and can be used in environmental monitoring, including volumetric alpha activity measurements.
About the authors
V. D. Volodin
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Email: ibvarvara@yandex.ru
119991, Moscow, Russia
V. O. Veselova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: ibvarvara@yandex.ru
119991, Moscow, Russia
A. V. Egorysheva
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: ibvarvara@yandex.ru
119991, Moscow, Russia
References
- Vajda N., Pöllänen R., Martin P., Kim C.K. Alpha Spectrometry // Handbook of Radioactivity Analysis. N.Y.: Academic, 2020. P. 493–573.
- Darby S., Hill D., Auvinen A., Barros-Dios J.M., Baysson H., Bochicchio F., Deo H., Falk R., Forastiere F., Hakama M., Heid I., Kreienbrock M., Kreuzer M., Lagarde F., Mäkeläinen I., Muirhead C., Oberaigner W., Pershagen G., Ruano-Ravina A., Ruosteenoja E., Schaffrath Rosario A., Tirmarche M., Tomáscaronek L., Whitley E., Wichmann H.-E., Doll R. Radon in Homes and Risk of Lung Cancer: Collaborative Analysis of Individual Data from 13 European Case-Control Studies // BMJ. 2005. V. 330. № 7485. P. 223–227. https://doi.org/10.1136/bmj.38308.477650.63
- Haedev S., Jasmine V. Radon Estimation in Some Lakes and Fraser River Water of British Columbia, Canada Using LR-115 Type II Alpha Track Detector // Res. Rev.: J. Toxicol. 2023. V. 12. № 1. P. 1–8. https://doi.org/10.37591/RRJoT
- Gulan L., Forkapić S., Spasić D., Živković Radovanović J., Hansman J., Lakatoš R., Samardžić S. Identification of High Radon Dwellings, Risk of Exposure, and Geogenic Potential in the Mining Area of the “TREPČA” Complex // Indoor Air. 2022. V. 32. № 7. P. e13077. https://doi.org/10.1111/ina.13077
- Reste J., Pavlovska I., Martinsone Z., Romans A., Martinsone I., Vanadzins I. Indoor Air Radon Concentration in Premises of Public Companies and Workplaces in Latvia // Int. J. Environ. Res. Public Health. 2022. V. 19. № 4. P. 1993. https://doi.org/10.3390/ijerph19041993
- Radzhapov B.S., Radzhapov S.A., Mullagalieva F.G., Zufarov M.A. The Development of Semiconductor Detectors for Radiometers of Alpha-Radiation and the Examination of the Volumetric Activity of Radon in Various Areas // Radiat. Detection Technol. Methods. 2023. P. 1–7. https://doi.org/10.1007/s41605-023-00406-z
- Sukanya S., Joseph S. Environmental Radon: A Tracer for Hydrological Studies in Radon Measurement Techniques. N.Y.: Springer Nature, 2023. P. 29–51.
- Hassanpour M., Dehghanipour P., Rezaie M., Hassanpour M., Faruque M.R.I., Khandaker M.U. Study of Alpha Spectrometry for Detection of Radon and Progeny Using Gas Micro-strip Detector // Appl. Radiat. Isot. 2022. V. 187. P. 110344. https://doi.org/10.1016/j.apradiso.2022.110344
- Weber M.J., Monchamp R.R. Luminescence of Bi4Ge3O12: Spectral and Decay Properties // J. Appl. Phys. 1973. V. 44. № 12. P. 5495–5499. https://doi.org/10.1063/1.1662183
- Bakkum E.A., Van Engelen C.P.M., Kamermans R., Teeling T.A., Timmerman L.J.M. The Response of BGO Scintillation Detectors to Light Charged Particles // Nucl. Instrum. Methods Phys. Res. 1984. V. 225. № 2. P. 330–334. https://doi.org/10.1016/0167-5087(84)90271-0
- Cardani L., Di Domizio S., Gironi L. A BGO Scintillating Bolometer for γ and α Spectroscopy // JINST. 2012. V. 7. № 10. P. 10022. https://doi.org/10.1088/1748-0221/7/10/P10022
- Coron N., García E., Gironnet J., Leblanc J., de Marcillac P., Martinez M., Ortigoza Y., Ortiz de Solórzano A., Pobes C., Puimedón J., Redon T., Sarsa M.L., Torres L., Villar J. A BGO Scintillating Bolometer as Dark Matter Detector Prototype // Opt. Mater. 2009. V. 31. № 10. P. 1393–1397. https://doi.org/10.1016/j.optmat.2008.09.016
- Usuda S., Mihara A., Abe H. Rise Time Spectra of α and β (γ) Rays from Solid and Solution Sources with Several Solid Scintillators // Nucl. Instrum. Methods. Phys., Sect. A 1992. V. 321. № 1–2. P. 247–253. https://doi.org/10.1016/0168-9002(92)90396-L
- DeVol T.A., Chotoo S.B., Fjeld R.A. Evaluation of Granulated BGO, GSO: Ce, YAG: Ce, CaF2: Eu and ZnS: Ag for Alpha/Beta Pulse Shape Discrimination in a Flow-cell Radiation Detector // Nucl. Instrum. Methods. Phys., Sect. A. 1999. V. 425. № 1–2. P. 228–231. https://doi.org/10.1016/S0168-9002(98)01380-1
- Veselova V.O., Gajtko O.M., Volodin V.D., Shafranov M.A., Egorysheva A.V. A One-step Synthesis of Dispersed Bismuth Orthogermanate Powder and Its Performance for Alpha- and Gamma-Radiation Detection // ChemistrySelect. 2023. V. 8. P. e202204590. https://doi.org/10.1002/slct.202204590
- Crookes W. On Radiant Matter; a Lecture Delivered to the British Association for the Advancement of Science, at Sheffield, Friday, August 22, 1879 // Am. J. Sci. 1879. V. 3. № 106. P. 241–262.
- Shimaoka T., Kaneko J.H., Izaki K., Tsubota Y., Higuchi M., Nishiyama S. Development of Scintillator Plates with High Energy Resolution for Alpha Particles Made of GPS Scintillator Grains // Nucl. Instrum. Methods. Phys., Sect. A. 2014. V. 735. P. 110–114. https://doi.org/10.1016/j.nima.2013.09.030
- Kaneko J.H., Izaki K., Toui K., Shimaoka T., Morishita Y., Tsubota Y., Higuchi M. An Alpha Particle Detector Based on a GPS Mosaic Scintillator Plate for Continuous Air Monitoring in Plutonium Handling Facilities // Radiat. Meas. 2016. V. 93. P. 13–19. https://doi.org/10.1016/j.radmeas.2016.07.006
- Komendo I., Bondarev A., Fedorov A., Dosovitskiy G., Gurinovich V., Kazlou D., Kozhemyakin V., Mechinsky V., Mikhlin A., Retivov V., Schukin V., Timochenko A., Murashev M., Zharova A., Korzhik M. New Scintillator 6Li2CaS-iO4:Eu2+ for Neutron Sensitive Screens // Nucl. Instrum. Methods. Phys., Sect. A. 2023. V. 1045. P. 167637. https://doi.org/10.1016/j.nima.2022.167637
- Fedorov A., Komendo I., Amelina A., Gordienko E., Gurinovich V., Guzov V., Dosovitskiy G., Kozhemyakin V., Kozlov D., Lopatik A., Mechinsky V., Retivov V., Smyslova V., Zharova A., Korzhik M. GYAGG/6LiF Composite Scintillation Screen for Neutron Detection // Nucl. Eng. Tech. 2022. V. 54. № 3. P. 1024–1029. https://doi.org/10.1016/j.net.2021.09.024
- Ivanov V.Y., Kruzhalov A.V., Pustovarov V.A., Petrov V.L. Electron Excitation and Luminescence in Bi4Ge3O12 and Bi4Si3O12 Crystals // Nucl. Instrum. Methods. Phys., Sect. A. 1987. V. 261. № 1–2. P. 150–152. https://doi.org/10.1016/0168-9002(87)90585-7
- Veselova V.O., Gajtko O.M., Volodin V.D., Egorysheva A.V. Effect of Different Organic Additives on the Shape, Size and Scintillation Properties of Bi4Ge3O12 Powders Synthesized by the Microwave-Hydrothermal Method // Adv. Powder Tech. 2021. V. 32. № 1. P. 175–185. https://doi.org/10.1016/j.apt.2020.11.028
- Александров А.А., Маякова М.Н., Кузнецов С.В., Воронов В.В., Поминова Д.В., Иванов В.К., Федоров П.П. Влияние совершенства кристаллических порошков люминофора β-NаYF4:Yb,Er на эффективность ап-конверсионной люминесценции // Неорган. материалы. 2022. Т. 58. № 1. С. 95–101. https://doi.org/10.31857/S0002337X22010018
- Гырдасова О.И., Калинкин М.О., Акулов Д.А., Абашев Р.М., Сюрдо А.И., Келлерман Д.Г. Влияние условий синтеза на термолюминесценцию LiMgPO4 // Журн. неорган. химии. 2023. Т. 68. № 2. С. 277–282. https://doi.org/10.31857/S0044457X22601754
- Карпов И.В., Ушаков А.В, Федоров Л.Ю., Гончарова Е.А., Брунгардт М.В. Исследование параметров вакуумно-дугового осаждения и их влияние на структурные и оптические частицы NiO // Неорган. материалы. 2022. Т. 58. № 8. С. 822–828. https://doi.org/10.31857/S0002337X22080036
- Ашуров М.Х., Нуритдинов И., Бойбобоева С.Т., Саидахмедов К.Х. Исследование оптических свойств монокристаллов и нанокерамики твердых растворов CаF2–SrF2–YbF3 // Неорган. материалы. 2022. Т. 58. № 8. С. 917–923. https://doi.org/10.31857/S0002337X22080012
Supplementary files
