Raising the Efficiency of Antimony(III) Ion Extraction from Solutions by Modified Titanium(IV) Oxyhydroxyphosphate-Based Sorbents

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have proposed compositions of titanyl hydrogen phosphate-based sorption materials modified with zirconium(IV) cations and containing both cation and anion exchange functional centers, represented by НРО
 and OH– groups, respectively. The synthesized materials were tested in sorption of antimony(III) cations and anions from high-salt solutions. Increasing the concentration of functional groups in ion exchange matrices has been shown to increase their affinity for antimony(III) ions. Such compositions can be regarded as promising ion exchange materials for efficient extraction of antimony radionuclides from multicomponent high-salt liquid radioactive waste.

About the authors

A. M. Petrov

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials (separate subdivision), Kola Scientific Center (Federal Research Center), Russian Academy of Sciences

Email: r.korneikov@ksc.ru
184209, Akademgorodok, Apatity, Murmansk oblast, Russia

E. V. Tikhomirova

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials (separate subdivision), Kola Scientific Center (Federal Research Center), Russian Academy of Sciences

Email: r.korneikov@ksc.ru
184209, Akademgorodok, Apatity, Murmansk oblast, Russia

S. V. Aksenova

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials (separate subdivision), Kola Scientific Center (Federal Research Center), Russian Academy of Sciences

Email: r.korneikov@ksc.ru
184209, Akademgorodok, Apatity, Murmansk oblast, Russia

R. I. Korneikov

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials (separate subdivision), Kola Scientific Center (Federal Research Center), Russian Academy of Sciences

Email: r.korneikov@ksc.ru
184209, Akademgorodok, Apatity, Murmansk oblast, Russia

V. I. Ivanenko

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Scientific Center, Russian Academy of Sciences

Author for correspondence.
Email: marmaslova@yandex.ru
Apatity, Russia

References

  1. Takahatake Y., Watanabe S., Shibata A., Nomura K., Koma Y. Decontamination of Radioactive Liquid Waste with Hexacyanoferrate(II) // Procedia Chem. 2012. № 7. P. 610–615.
  2. Abdel-Karima A.M., Zaki A.A., Elwana W., El-Naggar M.R., Gouda M.M. Experimental and Modeling Investigations of Cesium and Strontium Adsorption onto Clay of Radioactive Waste Disposal // Appl. Clay Sci. 2016. № 132–133. P. 391–401. https://doi.org/10.1016/j.clay.2016.07.005
  3. Mansy M.S., Hassana R.S., Selim Y.T., Kenawy S.H. Evaluation of Synthetic Aluminum Silicate Modified by Magnesia for the Removal of 137Cs, 60Co and 152+154Eu from Low-Level Radioactive Waste // Appl. Radiat. Isot. 2017. № 130. P. 198–205. https://doi.org/10.1016/j.apradiso.2017.09.042
  4. Kong T.Y., Kim S., Lee Y., Son J.K., Maeng S.J. Radioactive Effluents Released from Korean Nuclear Power Plants and the Resulting Radiation Doses to Members of the Public // Nucl. Eng. Technol. 2017. № 49. P. 1772–1777. https://doi.org/10.1016/j.net.2017.07.021
  5. Nishad P.A., Bhaskarapillai A., Velmurugan S. Nano-Titania-Crosslinked Chitosan Composite as a Superior Sorbent for Antimony (III) and (V) // Carbohydr. Polym. 2014. № 108. P. 169–175. https://doi.org/10.1016/j.carbpol.2014.02.091
  6. Gil-Díaz T., Schäfer J., Pougnet F., Abdou M., Dutruch L., Eyrolle-Boyer F., Coynel A., Blanc G. Distribution and Geochemical Behaviour of Antimony in the Gironde Estuary: A First Qualitative Approach to Regional Nuclear Accident Scenarios // Mar. Chem. 2016. № 185. P. 65–73. https://doi.org/10.1016/j.marchem.2016.02.002
  7. Remya Devi P.S., Joshi S., Verma R., Lali A.M., Gantayet L.M. Effect of Gamma Radiation on Organic Ion Exchangers // Radiat. Phys. Chem. 2010. № 79. P. 41–45.https://doi.org/10.1016/j.radphyschem.2009.08.002
  8. Roberts C.J. Management and Disposal of Waste from Sites Contaminated by Radioactivity // Radiat. Phys. Chem. 1998. V. 51. № 4–6. P. 579–587.
  9. Korneikov R.I., Ivanenko V.I. Extraction of Cesium and Strontium Cations from Solutions by Titanium(IV) Phosphate-Based Ion Exchangers // Inorg. Mater. 2020. V. 56. № 5. P. 502–506. https://doi.org/10.1134/S0020168520050088
  10. Милютин В.В., Некрасова Н.А., Козлитин Е.А. Селективные неорганические сорбенты в современной прикладной радиохимии // Матер. II Всерос. науч. конф. с международным участием “Исследования и разработки в области химии и технологии функциональных материалов” Спецвыпуск отделения “Химия и материаловедение”. Апатиты: Изд-во КНЦ РАН, 2015. С. 418–421.
  11. Korneikov R.I., Ivanenko V.I., Petrov A.M. Extraction of Antimony(III) Ions from Solutions by Sorbents Based on Titanium(IV) Compounds // Inorg. Mater. 2021. V. 57. № 5. P. 524–528. https://doi.org/10.1134/S0020168521050046
  12. Рябчиков Б.Е. Очистка жидких радиоактивных отходов. М.: ДеЛи принт, 2008. 516 с.
  13. Ivanenko V.I., Lokshin E.P., Korneikov R.I., Kalinnikov V.T. Increase in the Performance of Titanium Phosphate Sorbents by Modifying with Transition Metal Cations // Doklady Chemistry. 2011. V. 439. № 2. P. 230–232. https://doi.org/10.1134/S0012500811080039
  14. Korneikov R.I., Aksenova S.V., Ivanenko V.I., Lokshin E.P. Stability of Titanyl Hydrogen Phosphates in Aqueous Media // Inorg. Mater. 2018. V. 54. № 7. P. 689–693. https://doi.org/10.1134/S0020168518070063
  15. Ivanenko V.I., Korneikov R.I., Lokshin E.P. Immobilization of Metal Cations with Titanium PhosphatE Sorbents // Radiochemistry. 2016. V. 58. № 2. P. 159–166. https://doi.org/10.1134/S1066362216020089

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (187KB)
3.

Download (203KB)

Copyright (c) 2023 А.М. Петров, Е.В. Тихомирова, С.В. Аксенова, Р.И. Корнейков, В.И. Иваненко