Synthesis of MgAl2O4 Spinel in a Thermal Plasma
- 作者: Shekhovtsov V.V.1, Skripnikova N.K.1, Ulmasov A.B.1
-
隶属关系:
- Tomsk State University of Architecture and Civil Engineering
- 期: 卷 59, 编号 8 (2023)
- 页面: 888-895
- 栏目: Articles
- URL: https://medjrf.com/0002-337X/article/view/668176
- DOI: https://doi.org/10.31857/S0002337X23080146
- EDN: https://elibrary.ru/IACAIX
- ID: 668176
如何引用文章
详细
In this paper, we report an experimental study concerned with the synthesis of MgAl2O4 spinel via plasma-assisted melting of powder components at an Al2O3/MgO weight ratio varied from 1 to 4. The presence of excess Al2O3 in the starting mixture has been shown to cause the characteristic Bragg peak 111 (~65°) of crystalline MgAl2O4 to shift to larger 2θ angles and broaden. According to scanning electron microscopy results, the surface microstructure of the synthesized materials is formed by densely packed octahedral stoichiometric MgAl2O4 crystals ranging in size from 10 to 500 μm. The materials have been found to contain local regions that allow the dynamics of crystal growth during melt solidification to be examined. The proposed spinel synthesis method can find application in the fabrication of small thermally stable parts by casting.
作者简介
V. Shekhovtsov
Tomsk State University of Architecture and Civil Engineering
Email: shehovcov2010@yandex.ru
634003, Tomsk, Russia
N. Skripnikova
Tomsk State University of Architecture and Civil Engineering
Email: shehovcov2010@yandex.ru
634003, Tomsk, Russia
A. Ulmasov
Tomsk State University of Architecture and Civil Engineering
编辑信件的主要联系方式.
Email: shehovcov2010@yandex.ru
634003, Tomsk, Russia
参考
- Chenguang L., Yuhong L., Tan S., Qing P., Fei G. Oxygen Defects Stabilize the Crystal Structure of MgAl2O4 Spinel under Irradiation // J. Nucl. Mater. 2019. V. 527. P. 151830. https://doi.org/10.1016/j.jnucmat.2019.151830
- Masoud A.M., Rasoul S.M. Devising a Novel Method of Producing High Transparent Magnesium Aluminate Spinel (MgAl2O4) Ceramics Body Using Synthesized LiF Nanopowder and Spark Plasma Sintering // Mater. Chem. Phys. 2020. V. 250. P. 123035. https://doi.org/10.1016/j.matchemphys.2020.123035
- Soumen P., Bandyopadhyay A.K., Pal P.G., Mukherjee S., Samaddar B.N. Sintering Behaviour of Spinel–Alumina Composites // Bull. Mater. Sci. 2009. V. 32. № 2. P. 169–176. https://doi.org/10.1007/s12034-009-0026-8
- Emre Y., Claude C., Sedat A. Microstructural Development of Interface Layers between Co-Sintered Alumina and Spinel Compacts // J. Eur. Ceram. Soc. 2011. V. 31. P. 1649–1659. https://doi.org/10.1016/j.jeurceramsoc.2011.03.020
- Бучилин Н.В., Люлюкина Г.Ю., Варрик Н.М. Влияние режима обжига на структуру и свойства высокопористых керамических материалов на основе алюмомагнезиальной шпинели // Новые огнеупоры. 2019. № 1. С. 37–42. https://doi.org/10.17073/1683-4518-2019-1-37-42
- Филатова Н.В., Косенко Н.Ф., Глазков М.А. Спекание периклаза на бруситалюмофосфатной связке // Стекло и керамика. 2020. № 9. С. 16–20.
- Ульянова А.В. Получение плотной керамики на основе алюмомагниевой шпинели путем формирования твердых растворов в системе MgAl2O4–Ga2O3 // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1143–1149. https://doi.org/10.31857/S0044457X21080304
- Ko. Y.-C. Influence of the Characteristics of Spinels on the Slagresistance of Al2O3·MgO and Al2O3-Spinel Castables // J. Am. Ceram. Soc. 2004. V. 83. № 9. P. 2333–2335. https://doi.org/10.1111/j.1151-2916.2000.tb01559.x
- Радишевская Н.И., Назарова А.Ю., Львов О.В., Касацкий Н.Г., Саламатов В.Г., Сайков И.В., Ковалев Д.Ю. Синтез шпинели MgAl2O4 методом самораспространяющегося высокотемпературного синтеза // Неорган. материалы. 2020. Т. 56. № 2. С. 151–159. https://doi.org/10.31857/S0002337X2001011X
- Сенина М.О., Лемешев Д.О., Вершинин Д.И., Бойко А.В., Педченко М.С. Влияние концентрации B2O3 на свойства прозрачной керамики на основе алюмомагниевой шпинели // Неорган. материалы. 2019. Т. 55. № 8. С. 898–902. https://doi.org/10.1134/S0002337X19080141
- Гольева Е.В., Дунаев А.А., Чмель А.Е., Щербаков И.П. Влияние легирования керамики MgAl2O4 оксидом хрома на характер микроповреждений при точечном ударе // Неорган. материалы. 2021. Т. 57. № 4. С. 442–448. https://doi.org/10.31857/S0002337X21030052
- Yanqiu J., Qiang L., Xinyu M., Sha S., Xiaoying L., Xin L., Tengfei X., Jiang L. Influence of Presintering Temperature on Magnesium Aluminate Spinel Transparent Ceramics Fabricated by Solid-State Reactive Sintering // Int. J. Appl. Ceram. Technol. 2022. V. 19. P. 367–374. https://doi.org/10.1111/ijac.13888
- Slotznick S.P., Shim S.-H. In Situ Raman Spectroscopy Measurements of MgAl2O4 Spinel up to 1400°C // Am. Mineral. 2008. V. 93. P. 470–476. https://doi.org/10.2138/am.2008.2687
- Osipov V.V., Solomonov V.I., Platonov V.V. et al. Synthesis of Fe:MgAl2O4 Nanopowders into Laser Plum // Int. Res. J. 2018. V. 8. № 74. P. 32–39. https://doi.org/10.23670/IRJ.2018.74.8.005
- Шеховцов В.В., Скрипникова Н.К., Волокитин О.Г., Гафаров Р.Е. Синтез муллитсодержащей керамики в среде низкотемпературной плазмы // Физика и химия стекла. 2022. Т. 48. № 5. С. 630–634. https://doi.org/10.31857/S0132665121100619
- Шеховцов В.В., Волокитин О.Г., Ушков В.А., Зорин Д.А. Получение стеклокерамики системы MgO–SiO2 методом плазменной плавки // Письма в ЖТФ. 2022. Т. 48. № 24. С. 15–18. https://doi.org/10.21883/PJTF.2022.24.54017.19278
- Скрипникова Н.К., Волокитин О.Г., Шеховцов В.В., Семеновых М.А. Плазмохимический синтез анортита // Изв. вузов. Физика. 2022. Т. 65. № 6 (775). С. 139–144. https://doi.org/10.17223/00213411/65/6/139
- Шеховцов В.В., Скрипникова Н.К., Улмасов А.Б. Синтез алюмомагнезиальной керамики MgAl2O3 в среде термической плазмы // Вестн. Томского гос. архитектурно-строительного ун-та. 2022. Т. 24. № 3. С. 138–146. https://doi.org/10.31675/1607-1859-2022-24-3-138-146
- Mohapatra D., Sarkar D. Preparation of MgO–MgAl2O4 Composite for Refractory Application // J. Mater. Process. Technol. 2007. V. 189. P. 279–283. https://doi.org/10.1016/j.jmatprotec.2007.01.037
- Белогурова О.А., Саварина М.А., Шарай Т.В. Огнеупоры из форстеритового концентрата ковдорского горнообогатительного комбината // Тр.Кольского научного центра РАН. 2018. Т. 9. № 2-2. С. 808–814.
补充文件
