Chemical Processes of the Formation of Copper(I) Oxide on Copper Foil under Hydrothermal Conditions
- Authors: Zimbovskii D.S.1,2, Baranov A.N.2
-
Affiliations:
- Moscow Institute of Physics and Technology (National Research University)
- Moscow State University
- Issue: Vol 59, No 7 (2023)
- Pages: 780-787
- Section: Articles
- URL: https://medjrf.com/0002-337X/article/view/668218
- DOI: https://doi.org/10.31857/S0002337X23070163
- EDN: https://elibrary.ru/QSGZDZ
- ID: 668218
Cite item
Abstract
In this paper, we study the nucleation and growth of a copper(I) oxide layer during hydrothermal treatment of copper foil in an alkaline solution. Experimental (X-ray diffraction and scanning electron microscopy) data, Gibbs free energy calculations, and analysis of the growth process in terms of the Cabrera–Mott approach lead us to conclude that the hydroxide anion and dissolved oxygen concentrations play a key role in determining the phase composition and morphology of the hydrothermal treatment product.
About the authors
D. S. Zimbovskii
Moscow Institute of Physics and Technology (National Research University); Moscow State University
Email: anb@inorg.chem.msu.ru
141701, Dolgoprudnyi, Moscow region, Russia; 119991, Moscow, Russia
A. N. Baranov
Moscow State University
Author for correspondence.
Email: anb@inorg.chem.msu.ru
119991, Moscow, Russia
References
- Navarro R.M., del Valle F., Villoria de la Mano J.A., Álvarez-Galván M.C., Fierro J.L.G. Photocatalytic Water Splitting under Visible Light. Concept and Catalysts Development // Adv. Chem. Eng. 2009. V. 36. № 9. P. 111–143. https://doi.org/10.1016/S0065-2377(09)00404-9
- Baran T., Visibile A., Busch M., He X., Wojtyla S., Rondinini S., Minguzzi A., Vertova A. Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances // Molecules. 2021. V. 26. № 23. P. 7271. https://doi.org/10.3390/molecules26237271
- Зимбовский Д.С., Баранов А.Н. Синтез гетероструктур на основе Cu2O и их фотокаталитические свойства в реакции разложения воды // Неорган. материалы. 2020. Т. 56. № 4. С. 385–392. https://doi.org/10.31857/S0002337X20040156
- Bijani S., Schrebler R., Dalchiele E.A., Gabás M., Martínez L., Ramos-Barrado J.R. Study of the Nucleation and Growth Mechanisms in the Electrodeposition of Micro- and Nanostructured Cu2O Thin Films // J. Phys. Chem. C. 2011. V. 115. № 43. P. 21373–21382. https://doi.org/10.1021/jp208535e
- Halin D.S.C., Talib I.A., Daud A.R., Hamid M.A.A. Characterizations of Cuprous Oxide Thin Films Prepared by Sol-Gel Spin Coating Technique with Different Additives for the Photoelectrochemical Solar Cell // Int. J. Photoenergy. 2014. V. 2014. P. 352156. https://doi.org/10.1155/2014/352156
- Deo M., Ogale S. Crystal Facet Control for the Stability of p-Cu2O Nanoneedles as Photocathode for Photoelectrochemical Activity // Mater. Today Proc. 2018. V. 5. № 11. P. 23482–23489. https://doi.org/10.1016/j.matpr.2018.11.092
- Jin Z., Hu Z., Yu J.C., Wang J. Room Temperature Synthesis of a Highly Active Cu/Cu2O Photocathode for Photoelectrochemical Water Splitting // J. Mater. Chem. A. 2016. V. 4. № 36. P. 13736–13741. https://doi.org/10.1039/C6TA05274F
- Pan L., Zou J.-J., Zhang T., Wang S., Li Z., Wang L., Zhang X. Cu2O Film via Hydrothermal Redox Approach: Morphology and Photocatalytic Performance // J. Phys. Chem. C. 2014. V. 118. № 30. P. 16335–16343. https://doi.org/10.1021/jp408056k
- Зимбовский Д.С., Чурагулов Б.Р. Пленки Cu2O и CuO, полученные химическим и анодным окислением на поверхности медной фольги // Неорган. материалы. 2018. Т. 54. № 7. С. 694–702. https://doi.org/10.7868/S0002337X18070072
- Zimbovskiy D.S., Gavrilov A.I., Churagulov B.R. Synthesis of Copper Oxides Films via Anodic Oxidation of Copper Foil Followed by Thermal Reduction // IOP Conf. Ser. Mater. Sci. Eng. 2018. V. 347. P. 012010. https://doi.org/10.1088/1757-899X/347/1/012010
- Зимбовский Д.С., Чурагулов Б.Р., Баранов А.Н. Гидротермальный синтез пленок Cu2O на поверхности металлической меди в растворе NaOH // Неорган. материалы. 2019. Т. 55. № 6. С. 623–627. https://doi.org/10.1134/S0002337X19060174
- Zimbovskii D.S., Baranov A.N. One-Step Hydrothermal Surface Oxidation of Copper Foil for Photocatalytic Water Splitting // IOP Conf. Ser. Mater. Sci. Eng. 2019. V. 525. P. 012018. https://doi.org/10.1088/1757-899X/525/1/012018
- Справочник по электрохимии / Под ред. Сухотина А.М. Л.: Химия, 1981. 488 с.
- Bratsch S.G. Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K // J. Phys. Chem. Ref. Data. 1989. V. 18. № 1. P. 1–21. https://doi.org/10.1063/1.555839
- Pabalan R.T., Pitzer K.S. Thermodynamics of NaOH(aq) in Hydrothermal Solutions // Geochim. Cosmochim. Acta. 1987. V. 51. № 4. P. 829–837. https://doi.org/10.1016/0016-7037(87)90096-2
- Tromans D. Modeling Oxygen Solubility in Water and Electrolyte Solutions // Ind. Eng. Chem. Res. 2000. V. 39. № 3. P. 805–812. https://doi.org/10.1021/ie990577t
- Tromans D. Oxygen Solubility Modeling in Inorganic Solutions: Concentration, Temperature and Pressure Effects // Hydrometallurgy. 1998. V. 50. № 3. P. 279–296. https://doi.org/10.1016/S0304-386X(98)00060-7
- Palmer D.A. Solubility Measurements of Crystalline Cu2O in Aqueous Solution as a Function of Temperature and pH // J. Solution Chem. 2011. V. 40. № 6. P. 1067–1093. https://doi.org/10.1007/s10953-011-9699-x
- Palmer D.A. The Solubility of Crystalline Cupric Oxide in Aqueous Solution from 25 to 400°C // J. Chem. Thermodyn. 2017. V. 114. P. 122–134. https://doi.org/10.1016/j.jct.2017.03.012
- Giri S.D., Sarkar A. Electrochemical Study of Bulk and Monolayer Copper in Alkaline Solution // J. Electrochem. Soc. 2016. V. 163. № 3. P. I1252–I1259. https://doi.org/10.1149/2.0071605jes
- Cabrera N., Mott N.F. Theory of the Oxidation of Metals // Reports Prog. Phys. 1949. V. 12. № 1. P. 163–184. https://doi.org/10.1088/0034-4885/12/1/308
- Жук Н.П. Курс теории коррозии и защиты металлов. М.: Металлургия, 1976. 472 с.
Supplementary files
