Calcium, Lanthanide, and Zirconium Vanadates with the Zircon Structure: Preparation, Structure, and Behavior during Heating

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using coprecipitation, we have synthesized LnVO4 (simple) and CaLnZr(VO4)3 (Ln = Nd, Sm, Eu, Gd, Dy, Yb) (ternary) lanthanide orthovanadates; a La0.3Nd0.5Sm0.1Eu0.1VO4 solid solution, modeling the composition of the lanthanides in radioactive waste (all crystallizing in the zircon structure, sp. gr. I41/amd); and LaVO4, crystallizing in the monazite structure. Their unit-cell parameters have been shown to increase systematically with increasing lanthanide ionic radius. Their mid- and far-IR vibrational spectra suggest that their symmetry is lower than that of classical zircon. The synthesized compounds are stable up to 900°C. Their average thermal expansion coefficients lie in the range (6–11) × 10–6 K–1.

About the authors

A. K. Koryttseva

Lobachevsky State University

Email: koak@mail.ru
603022, Nizhny Novgorod, Russia

E. Yu. Borovikova

Faculty of Geology, Moscow State Universit

Email: koak@mail.ru
119991, Moscow, Russia

A. I. Beskrovnyi

Joint Institute for Nuclear Research

Email: bala@nf.jinr.ru
141980, Dubna, Moscow oblast, Russia

V. А. Turchenko

Joint Institute for Nuclear Research

Email: turchenko@jinr.ru
Russia, 141980, Dubna

K. E. Smetanina

Lobachevsky State University

Email: andreev@phys.unn.ru
603022, Nizhny Novgorod, Russia

A. A. Murashov

Lobachevsky State University

Email: golovkina_lyudmila@mail.ru
603022, Nizhny Novgorod, Russia

A. V. Nokhrin

Lobachevsky State University of Nizhny Novgorod

Email: nokhrin@nifti.unn.ru
Russia, 603022, Nizhny Novgorod

N. S. Litonova

Lobachevsky State University of Nizhny Novgorod

Email: koak@mail.ru
603022, Nizhny Novgorod, Russia

A. I. Orlova

Lobachevsky State University

Email: golovkina_lyudmila@mail.ru
Russia, Nizhniy Novgorod, 603022

D. M. Korshunov

Geological Institute, Russian Academy of Sciences

Author for correspondence.
Email: koak@mail.ru
119017, Moscow, Russia

References

  1. Orlova A.I., Ojovan M.I. Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization // Materials. 2019. V. 12. № 16. P. 2638.
  2. Китаев Д.Б., Волков Ю.Ф., Орлова А.И. Ортофосфаты четырехвалентных Ce, Th, U, Np и Pu со структурой монацита // Радиохимия. 2004. Т. 46. № 3. С. 195–200.
  3. Ewing R., Lutze W., Weber W. Zircon: A Host-Phase for the Disposal of Weapons Plutonium // J. Mater. Res. 1995. V. 10. № 2. P. 24–246.
  4. Clavier N., Podor R., Dacheux N. Crystal Chemistry of the Monazite Structure // J. Eur. Ceram. Soc. 2011. V. 31. № 6. P. 941–976.
  5. Nabar M.A., Mhatre B.G. Studies on Triple Orthovanadates VIII. Synthesis and Spectrostructural Characterization of Triple Orthovanadates BaLnTh(VO4)3 (Ln = La or Pr) and BaLnCe(VO4)3 (Ln = La, Pr, Nd or Sm) // J. Alloys Compd. 2001. V. 323–324. P. 83–85.
  6. Nabar M.A., Mhatre B.G., Vasaika A.P. Studies on Triple Orthovanadates. Part 3. Crystal Chemistry of the Zircon Analogues of Type MIILnMIV(VO4)3 (MII = Ca or Pb; MIV = Ce or Th; Ln = Lanthanide element) // J. Appl. Crystallogr. 1981. V. 323–324. № 5. P. 469–470.
  7. Nabar M.A., Mhatre B.G. Studies on Triple Orthovanadates. IV. Crystal Chemistry of the Solid Solutions Ca1–xBaxLaTh(VO4)3 // Inorg. Chim. Acta. 1987. V. 140. P. 165–166.
  8. Chakoumakos B.C., Abraham M.M., Boatner L.A Crystal Structure Refinements of Zircon-Type MVO4 (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu) // J. Solid. State Chem. 1994. V. 109. P. 197–202.
  9. DIFFRAC.EVA. Release 2011. Copyright Bruker AXS 2010, 2011. Version 2.0. www.bruker-axs.com.
  10. Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides // Acta Crystallogr., Sect. A. 1976. V. 32. № 5. P. 751–767.
  11. Zhou D., Li J., Pang L.-X., Chen G.-H., Qi Z.-M., Wang D.-W., Reaney I.M. Crystal Structure, Infrared Spectra, and Microwave Dielectric Properties of Temperature-Stable Zircon-Type (Y,Bi)VO4 Solid-Solution Ceramics // ACS Omega, 2016. V. 1. P. 963–970.
  12. Elliott R. J., Harley R. T., Hayes W., Smith, S. R. P. Raman Scattering and Theoretical Studies of Jahn-Teller Induced Phase Transitions in Some Rare-Earth Compounds // Proc. Soc. A: Math. Phys. Eng. Sci. 1972. V. 328. P. 217–266.
  13. Vali R. Ab initio Vibrational and Dielectric Properties of YVO4 // Solid. State Commun. 2009. V. 149. P. 1637–1640.
  14. Borovikova E.Yu., Kurazhkovskaya V.S., Boldyrev K.N., Sukhanov M.V., Pet’kov V.I., Kokarev S.A. Vibrational Spectra and Factor-Group Analysis of Double Arsenates of Zirconium and Alkali Metal MZr2(AsO4)3 (M = Li–Cs) // Vibr. Spectrosc. 2014. V. 73. P. 158–163.
  15. Sun L., Zhao X., Li Y., Li P., Sun H., Cheng X., Fan W. First-Principles Studies of Electronic, Optical, and Vibrational Properties of LaVO4 Polymorph // J. Appl. Phys. 2010. V. 108. P. 093519.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (73KB)
3.

Download (189KB)
4.

Download (633KB)
5.

Download (433KB)
6.

Download (4MB)
7.

Download (402KB)

Copyright (c) 2023 А.К. Корытцева, А.И. Орлова, Н.С. Литонова, А.В. Нохрин, А.А. Мурашов, К.Е. Сметанина, В.А. Турченко, А.И. Бескровный, Е.Ю. Боровикова, Д.М. Коршунов