Self-Propagating High-Temperature Synthesis of a Ti–Al–Mn Alloy
- Authors: Lazarev P.A.1, Busurina M.L.1, Boyarchenko O.D.1, Kovalev D.Y.2, Sychev A.E.1
-
Affiliations:
- Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
- Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
- Issue: Vol 59, No 6 (2023)
- Pages: 705-711
- Section: Articles
- URL: https://medjrf.com/0002-337X/article/view/668242
- DOI: https://doi.org/10.31857/S0002337X23060118
- EDN: https://elibrary.ru/ETWBMD
- ID: 668242
Cite item
Abstract
An alloy based on the Laves phase Ti(Mn0.75Al1.25) has been prepared by self-propagating high-temperature synthesis using a 34.8Ti + 45.2Al + 20Mn (at %) mixture. The relative density of the as-prepared samples has been shown to influence the phase composition of the alloy. In the case of a relative density of ~0.75, we obtained a single-phase intermetallic alloy with a porosity of 45%, containing ~2 wt % of Al2O3 as an impurity phase. Synthesis from a mixture with a relative density of 0.55 yielded a two-phase alloy containing a Laves phase and the τ-Ti(Al2.68Mn0.32) phase. The alloy was in a nonequilibrium state, and annealing at 1000°C for 3 h led to the formation of a single-phase alloy based on the Laves phase Ti(Mn0.75Al1.25). Its microhardness was determined to be 7.96 ± 0.8 GPa.
About the authors
P. A. Lazarev
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: busurina@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia
M. L. Busurina
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: busurina@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia
O. D. Boyarchenko
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: busurina@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia
D. Yu. Kovalev
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Email: vadchenko@ism.ac.ru
Russian Federation, 142432, Moscow Region, Chernogolovka
A. E. Sychev
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Author for correspondence.
Email: lazarev@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia
References
- Leyens C., Peters M. Titanium and Titanium Alloys: Fundamentals and Applications / Ed. Christoph L., Manfred P. Weinheim: WILEY-VCH Verlag, 2003. ISBN: 3-527-30534-3.
- Kunal K., Ramachandran R., Norman M. Advances in Gamma Titanium Aluminides and Their Manufacturing Techniques // Prog. Aerospace Sci. 2012. V. 55. P. 1–16. https://doi.org/10.1016/j.paerosci.2012.04.001
- Yogesha B., Bhattacharya S. Superplastic Behavior of a Ti–Al–Mn Alloy // J. Manuf. Sci. Prod. 2008. V. 9. № 1–2. P. 81–86. https://doi.org/10.1515/IJMSP.2008.9.1-2.81
- Mikhaylovskaya A., Mosleh A., Kotov A., Kwame J., Pourcelot T., Golovin I., Portnoy V. Superplastic Deformation Behavior and Microstructure Evolution of near-α-Ti-Al-Mn Alloy // Mater. Sci. Eng: A. 2017. V. 708. P. 469–477. https://doi.org/10.1016/j.msea.2017.10.017
- Luzhnikov L., Moiseyev V. Alloys of the Ti–Al–Mn System // Met. Sci. Heat Treat. 1961. V. 3. P. 310–314. https://doi.org/10.1007/BF00810382
- Kim Y.W., Dimiduk D.M. Progress in the Understanding of Gamma Titanium Aluminides // JOM. 1991. V. 43. P. 40–47. https://doi.org/10.1007/BF03221103
- Chan K.S. Understanding Fracture Toughness in Gamma TiAl // JOM. 1992. V. 44. P. 30–38. https://doi.org/10.1007/BF03223047
- Hashimoto K., Doi H., Kasahara K., Nakano O., Tsujimoto T., Suzuki T. Effects of Additional Elements on Mechanical Properties of TiAl-base Alloys // J. Jpn Inst. Met. 1988. V. 52. № 11. P. 1159–1166. https://doi.org/10.2320/jinstmet1952.52.11_1159
- Hashimoto K., Doi H., Kasahara K., Nakano O., Tsujimoto T., Suzuki T. Effects of Third Elements on the Structures of TiA1-Based Alloys // J. Jpn Inst. Met. 1988. V. 52. № 8. P. 816–825. https://doi.org/10.2320/jinstmet1952.52.8_816
- Dwight A. Alloying Behavior of Zirconium, Hafnium and the Actinides in Several Series of Isostructural Compounds // J. Less-Common Met. 1974. V. 34. P. 279–284. https://doi.org/10.1016/0022-5088(74)90170-2
- Chakrabarti D.J. Phase Stability in Ternary Systems of Transition Elements with Aluminum // Metall. Mater. Trans. B. 1977. V. 8. P. 121–123. https://doi.org/10.1007/BF02656360
- Sun J., Lee C., Hu G. The Dependence of Tensile Behaviour of Ll2 Compound AI67Ti25Mn8 on the Strain Rate at 1173 K // Scr. Mater. 1997. V. 37. № 5. P. 645–650.
- Mabuchi H., Kito A., Nakamoto A., Tsuda H., Nakayama Y. Effects of Manganese on the L12 Compound Formation in Al3Ti-based Alloys // Intermetallics. 1996. V. 4. P. 193–199. https://doi.org/10.1016/0966-9795(96)00005-2
- Xin-L., Xing Q., Grytsiv A., Rogl P., Podloucky R., Schmidt H., Giester G, Xue-Yong D. On the Ternary Laves Phases Ti(Mn1–xAlx)2 with MgZn2-type // Intermetallics. 2008. V. 16. P. 16–26. https://doi.org/10.1016/j.intermet.2007.07.005
- Chen Z., Jones I., Small C. Laves Phase in Ti-42Al-10Mn Alloy // Scr. Mater. 1996. V. 35. № 1. P. 23–27. https://doi.org/10.1016/1359-6462(96)00085-1
- Butler C.J., Mccartney D.G., Small C.J., Horrocks F.J., Saunders N. Solidification Microstructures and Calculated Phase Equilibria in the Ti-Al–Mn System // Acta Mater. 1997. V. 45. № 7. P. 2931–2947. https://doi.org/10.1016/S1359-6454(96)00391-6
- Chen L.Y., Li C.H., Qiu A.T., Lu X.G., Ding W.Z., Zhong Q.D. Calculation of Phase Equilibria in Ti–Al–Mn Ternary System Involving a New Ternary Intermetallic Compound // Intermetallics. 2010. V. 18. № 11. P. 2229–2237. https://doi.org/10.1016/j.intermet.2010.07.005
- Raghavan V. Al–Mn–Ti (Aluminum–Manganese–Titanium) // J. Phase Equilib. Diffus. 2011. V. 32. P. 465–467. https://doi.org/10.1007/s11669-011-9926-6
- Zhi L., Jiashi M., Renhai S., James C.W., Alan A.L. CALPHAD Modeling and Experimental Assessment of Ti–Al–Mn Ternary System // Calphad. 2018. V. 63. P. 126–133. https://doi.org/10.1016/j.calphad.2018.09.002
- Zhang S., Nic J., Mikkola D. New Cubic Phases Formed by Alloying Al3Ti with Mn and Cr // Scr. Metall. Mater. 1990. V. 24. P. 57–62.
- Toshimitsu T., Hiroshi H. The Influence of Oxygen Concentration and Phase Composition on the Manufacturability and High-Temperature Strength of Ti–42Al–5Mn (at %) Forged Alloy // J. Mater. Process. Technol. 2019. V. 213. P. 752–758. https://doi.org/10.1016/j.jmatprotec.2012.12.003
- Hongjian T., Xiaobing L., Yingche M., Chen B., Xing W., Zhao P., Lei S., Zhang M., Liu K. Multistep Evolution of βo Phase during Isothermal Annealing of Ti–42Al–5Mn Alloy: Formation of Laves Phase // Intermetallics. 2020. V. 126. https://doi.org/10.1016/j.intermet.2020.106932
- Лазарев П.А., Бусурина М.Л., Сычев А.Е. Самораспространяющийся высокотемпературный синтез в системе Ti–Al–Mn // Физика горения и взрыва. 2023. Т. 59. № 1. С. 1272–1278. https://doi.org/10.15372/FGV20230109
- Shu S., Qiu F., Xing B., Jin S., Wang J., Jiang Q. Effect of Strain Rate on the Compression Behavior of TiAl and TiAl–2Mn Alloys Fabricated by Combustion Synthesis and Hot Press Consolidation // Intermetallics. 2013. V. 43. P. 24–28. https://doi.org/10.1016/j.intermet.2013.07.003
- Bondarchuk Yu.V., Pityulin A.N., Sytschev A.E. SHS Compunction of Multilayer Solid Alloy/Metal Materials // Int. J. Self-Propag. High-Temp. Synth. 1993. V. 2. P. 75–83.
- Питюлин А.Н. Силовое компактирование в СВС-процессах // Самораспространяющийся высокотемпературный синтез: теория и практика / Под ред. Сычева А.Е. Черноголовка: Территория, 2001. С. 333–353.
- Kovalev D., Ponomarev V. Time-Resolved X-Ray Diffraction in SHS Research and Related Areas: An Overview // Int. J. Self-Propag. High-Temp. Synth. 2019. V. 28. № 2. P. 114–123.
- Yong D., Jiong W., Jingrui Z., Clemens J., Weitzer F., Schmid R., Munekazu O., Honghui X., Liu Z., Shunli S., Zhang W. Reassessment of the Al–Mn System and a Thermodynamic Description of the Al–Mg–Mn System // Int. J. Mater. Res. 2007. V. 98. № 9. P. 855–871. https://doi.org/10.3139/146.101547
- Shevyrtalov S., Zhukov A., Medvedeva S., Lyatun I., Zhukova V., Rodionova V. Radial Elemental and Phase Separation in Ni-Mn-Ga Glass-Coated Microwires // J. Appl. Phys. 2018. V. 123 № 17. P. 173–903. https://doi.org/10.1063/1.5028549
Supplementary files
