Experimental Study of the Binary System Mg3(PO4)2–Mg4Na(PO4)3

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The Mg3(PO4)2–Mg4Na(PO4)3 system has been studied using thermal analysis, X-ray diffraction, and X-ray microanalysis. Firing the constituent phosphates at 800°C has been shown to cause no phase changes, whereas firing above 1000°C leads to the formation of a single-phase material, which is due to the incongruent melting of the magnesium sodium double orthophosphate Mg4Na(PO4)3. The homogeneity range of the compounds in the Mg3(PO4)2–Mg4Na(PO4)3 system differing in composition has been determined by X-ray microanalysis. The microstructure of Mg3–xNa2x(PO4)2-based ceramic materials prepared by sintering at a temperature of 1000°C has an average grain size under 10 μm. The synthesized bioceramic materials are potentially attractive for use as implants for bone tissue regeneration.

Авторлар туралы

I. Preobrazhenskiy

Faculty of Materials Science, Moscow State University

Email: preo.ilya@yandex.ru
119991, Moscow, Russia

Ya. Filippov

Faculty of Materials Science, Moscow State University; Research Institute of Mechanics, Moscow State University

Email: preo.ilya@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia

P. Evdokimov

Faculty of Materials Science, Moscow State University; Faculty of Chemistry, Moscow State University; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: preo.ilya@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia; 119991, Moscow, Russia

V. Putlyaev

Faculty of Materials Science, Moscow State University; Faculty of Chemistry, Moscow State University

Хат алмасуға жауапты Автор.
Email: preo.ilya@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia

Әдебиет тізімі

  1. Сафронова Т.В. Неорганические материалы для регенеративной медицины // Неорган. материалы. 2021. Т. 57. № 5. С. 467–499. https://doi.org/10.31857/S0002337X21050067
  2. Фадеева И.В., Фомин А.С., Баринов С.М., Давыдова Г.А., Селезнева И.И., Преображенский И.И., Русаков М.К., Фомина А.А., Волченкова В.А. Синтез и свойства марганецсодержащих кальцийфосфатных материалов // Неорган. материалы. 2020. Т. 56. № 7. С. 738–745. https://doi.org/10.31857/S0002337X20070052
  3. Wang X., Zhai D., Yao X., Wang Y., Ma H., Yu X., Du L., Lin H., Wu C. 3D Printing of Pink Bioceramic Scaffolds for Bone Tumor Tissue Therapy // Appl. Mater. Today. 2022. V. 27. P. 101443. https://doi.org/10.1016/j.apmt.2022.101443
  4. Голованова О.А. Формирование гранул фосфаты кальция/хитозан // Неорган. материалы. 2021. Т. 57. № 9. С. 999–1007. https://doi.org/10.31857/S0002337X21090098
  5. Preobrazhenskiy I.I., Tikhonov A.A., Evdokimov P.V., Shibaev A.V., Putlyaev V.I. DLP Printing of Hydrogel/Calcium Phosphate Composites for the Treatment of Bone Defects // Open Ceram. 2021. V. 6. P. 100115. https://doi.org/10.1016/j.oceram.2021.100115
  6. Солоненко А.П., Блесман А.И., Полонянкин Д.А., Горбунов В.А. Синтез композитов на основе фосфатов и силикатов кальция // Журн. неорган. химии. 2018. Т. 63. № 8. С. 953–960. https://doi.org/10.1134/S0044457X18080214
  7. Преображенский И.И., Тихонов А.А., Климашина Е.С., Евдокимов П.В., Путляев В.И. Набухание акрилатных гидрогелей, наполненных брушитом и октакальциевым фосфатом // Изв. АН. Сер. хим. 2020. № 8. С. 1601–1603. https://elibrary.ru/item.asp?id=43862779
  8. Преображенский И.И., Путляев В.И. Трехмерная печать биосовместимых материалов на основе гидрогелей // Журн. прикл. химии. 2022. Т. 95. № 6. С. 685–699. https://doi.org/10.31857/S0044461822060020
  9. Sun H., Zhang C., Zhang B., Song P., Xu X., Gui X., Chen X., Lu G., Li X., Liang J., Sun J., Jiang Q., Zhou C., Fan Y., Zhou X., Zhang X. 3D Printed Calcium Phosphate Scaffolds with Controlled Release of Osteogenic Drugs for Bone Regeneration // Chem. Eng. J. 2022. V. 427. P. 130961. https://doi.org/10.1016/j.cej.2021.130961
  10. Fadeeva I.V., Goldberg M.A., Preobrazhensky I.I., Mamin G.V., Davidova G.A., Agafonova N.V., Fosca M., Russo F., Barinov S.M., Cavalu S., Rau J.V. Improved Cytocompatibility and Antibacterial Properties of Zinc-Substituted Brushite Bone Cement Based on β-Tricalcium Phosphate // J. Mater. Sci.: Mater. Med. 2021. V. 32. № 9. P. 1–12. https://doi.org/10.1007/s10856-021-06575-x
  11. Zhang S., Zhang X., Zhao C., Li J., Song Y., Xie C., Tao H., Zhang Y., He Y., Jiang Y., Bian Y. Research on an Mg–Zn Alloy as a Degradable Biomaterial // Acta Biomater. 2010. V. 6. № 2. P. 626–640. https://doi.org/10.1016/j.actbio.2009.06.028
  12. Salimi M.H., Heughebaert J.C., Nancollas G.H. Crystal Growth of Calcium Phosphates in the Presence of Magnesium Ions // Langmuir. 1985. V. 1. № 1. P. 119–122. https://doi.org/10.1021/la00061a019
  13. Liu M., Liu H., Feng F., Xie A., Kang G.J., Zhao Y., Hou C.R., Zhou X., DudleyJr S.C. Magnesium Deficiency Causes a Reversible, Metabolic, Diastolic Cardiomyopathy // J. Am. Heart Assoc. 2021. P. e020205. https://doi.org/10.1161/JAHA.120.020205
  14. Gronowicz G., McCarthy M.B. Response of Human Osteoblasts to Implant Materials: Integrin-Mediated Adhesion // J. Orthop. Res. 1996. V. 14. № 6. P. 878–887. https://doi.org/10.1002/jor.1100140606
  15. Zhao X., Yang Z., Liu Q., Yang P., Wang P., Wei S., Liu A., Zhao Z. Potential Load-Bearing Bone Substitution Material: Carbon-Fiber-Reinforced Magnesium-Doped Hydroxyapatite Composites with Excellent Mechanical Performance and Tailored Biological Properties // ACS Biomater. Eng. 2022. https://doi.org/10.1021/acsbiomaterials.1c01247
  16. Chau C., Qiao F., Li Z. Potentiometric Study of the Formation of Magnesium Potassium Phosphate Hexahydrate // J. Mater. Civil Eng. 2012. V. 24. № 5. P. 586–591. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000410
  17. Ewald A., Helmschrott K., Knebl G., Mehrban N., Grover L.M., Gbureck U. Effect of Cold-Setting Calcium- and Magnesium Phosphate Matrices on Protein Expression in Osteoblastic Cells // J. Biomed. Mater. Res. Part B: Appl. Biomater. 2011. V. 96. № 2. P. 326–332. https://doi.org/10.1002/jbm.b.31771
  18. Никитина Ю.О., Петракова Н.В., Ашмарин А.А., Титов Д.Д., Шевцов С.В., Пенкина Т.Н., Кувшинова Е.А., Баринов С.М., Комлев В.С., Сергеева Н.С. Получение и исследование свойств порошков и керамики медьзамещенного гидроксиапатита // Неорган. материалы. 2019. Т. 55. № 10. С. 1123–1129. https://doi.org/10.1134/S0002337X19100117
  19. Преображенский И.И., Путляев В.И. Синтез и фазовые превращения соединений системы Mg4Na(PO4)3–Mg3(PO4)2 в качестве перспективных фаз для изготовления биокерамики // Неорган. материалы. 2022. Т. 58. № 4. С. 367–373. https://doi.org/10.31857/S0002337X22030125
  20. Abbona F., Madsen H.L., Boistelle R. Crystallization of Two Magnesium Phosphates, Struvite and Newberyite: Effect of pH and Concentration // J. Cryst. Growth. 1982. V. 57. № 1. P. 6–14. https://doi.org/10.1016/0022-0248(82)90242-1
  21. PDF-4+ 2010 (Database). Newtown Square: International Centre for Diffraction Data, 2010. http://www.icdd.com/products/pdf2.htm
  22. Majling J., Hanic F. Phase Coexistence in the System Mg3(PO4)2–Ca3(PO4)2–Na3PO4 // Chem. Zv. 1976. V. 30. № 2. P. 145–152.
  23. Kushkevych I., Abdulina D., Dordević D., Rozehnalová M., Vítězová M., Černý M., Svoboda P., Rittmann M.R. Basic Bioelement Contents in Anaerobic Intestinal Sulfate-Reducing Bacteria // Appl. Sci. 2021. V. 11. № 3. P. 1152. https://doi.org/10.3390/app11031152
  24. Martínez-Moreno D., Jiménez G., Chocarro-Wrona C., Carrillo E., Montañez E., Galocha-León C., Clares-Naveros B., Gálvez-Martín P., Rus G., de Vicente J., Marchal J.A. Pore Geometry Influences Growth and Cell Adhesion of Infrapatellar Mesenchymal Stem Cells in Biofabricated 3D Thermoplastic Scaffolds Useful for Cartilage Tissue Engineering // Mater. Sci. Eng., C. 2021. V. 122. P. 111933. https://doi.org/10.1016/j.msec.2021.111933

Қосымша файлдар


© И.И. Преображенский, Я.Ю. Филиппов, П.В. Евдокимов, В.И. Путляев, 2023