Growth of Aluminum Molybdenum Oxide Films by Atomic Layer Deposition with Using Trimethylaluminum, Molybdenum Oxytetrachloride, and Water
- Авторлар: Maksumova A.M.1, Bodalev I.S.2, Suleimanov S.I.1, Alikhanov N.M.1, Abdulagatov I.M.1, Rabadanov M.K.1, Abdulagatov A.I.1
-
Мекемелер:
- Dagestan State University, 367000, Makhachkala, Dagestan, Russia
- St. Petersburg State Institute of Technology, 190013, St. Petersburg, Russia
- Шығарылым: Том 59, № 4 (2023)
- Беттер: 384-393
- Бөлім: Articles
- URL: https://medjrf.com/0002-337X/article/view/668272
- DOI: https://doi.org/10.31857/S0002337X2304005X
- EDN: https://elibrary.ru/GMHSWK
- ID: 668272
Дәйексөз келтіру
Аннотация
In this paper, we report on the growth of aluminum molybdenum oxide (AlxMoyOz) films via atomic layer deposition (ALD) with the use of trimethylaluminum (TMA) (Al(CH3)3), molybdenum oxytetrachloride (MoOCl4), and water. The film growth process was studied in situ using a quartz crystal microbalance and ex situ using various X-ray techniques. AlxMoyOz ALD was performed using supercycles consisting of TMA/H2O and MoOCl4/H2O subcycles. We obtained two types of films, with the subcycles in the ratio 1 : 1 (1Al1MoO) and 1 : 7 (1Al7MoO). Film growth at 150°C was shown to be a linear process, with growth rate of 3.0 and 5.7 Å/supercycle for 1Al1MoO and 1Al7MoO, respectively. The density of the 1Al1MoO and 1Al7MoO films were 3.7 and 3.9 g/cm3, respectively, and their surface roughness did not exceed 20 Å. The oxidation state of the molybdenum in the films found to be 6+, 5+, and 4+. X-ray diffraction characterization showed that the films had an amorphous structure.
Негізгі сөздер
Авторлар туралы
A. Maksumova
Dagestan State University, 367000, Makhachkala, Dagestan, Russia
Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а
I. Bodalev
St. Petersburg State Institute of Technology, 190013, St. Petersburg, Russia
Email: ilmutdina@gmail.com
Россия, 190013, Санкт-Петербург, Московский пр., 24-26/49 лит. А
S. Suleimanov
Dagestan State University, 367000, Makhachkala, Dagestan, Russia
Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а
N. Alikhanov
Dagestan State University, 367000, Makhachkala, Dagestan, Russia
Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а
I. Abdulagatov
Dagestan State University, 367000, Makhachkala, Dagestan, Russia
Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а
M. Rabadanov
Dagestan State University, 367000, Makhachkala, Dagestan, Russia
Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а
A. Abdulagatov
Dagestan State University, 367000, Makhachkala, Dagestan, Russia
Хат алмасуға жауапты Автор.
Email: ilmutdina@gmail.com
Россия, 367000, Махачкала, ул. Гаджиева, 43-а
Әдебиет тізімі
- Matsumoto Y., Shimanouchi R. Synthesis of Al2(MoO4)3 by Two Distinct Processes, Hydrothermal Reaction and Solid-State Reaction // Procedia Eng. 2016. V. 148. P. 158–162. https://doi.org/10.1016/j.proeng.2016.06.507
- Davis B.E., Strandwitz N.C. Aluminum Oxide Passivating Tunneling Interlayers for Molybdenum Oxide Hole-Selective Contacts // IEEE J. Photovolt. 2020. V. 10. № 3. P. 722–728. https://doi.org/10.1109/jphotov.2020.2973447
- Chowdhury S., Khokhar M.Q., Pham D.Ph., Yi J. Al2O3/MoOx Hole-Selective Passivating Contact for Silicon Heterojunction Solar Cell // ECS J. Solid State Sci. Technol. 2022. V. 11. № 1. P. 015004. https://doi.org/10.1149/2162-8777/ac4d83
- Харлампова Р.Н., Зайдман Н.М., Плясова Л.М., Мипова Л.П., Нагаева Л.А., Шкарин А.В. Дисперсность активного компонента в алюмомолибденовых катализаторах // Кинетика и катализ. 1973. Т. 14. № 6. С. 1538–1543.
- Haber J. The Role of Molybdenum in Catalysi. London: Climax Molybdenum Co, 1981. P. 479.
- Gasonoo A., Ahn H.-S., Jang E.-J., Kim M.-H., Gwag J.S., Lee J.-H., Choi Y. Fabrication of Multi-Layer Metal Oxides Structure for Colored Glass // Materials. 2021. V. 14. P. 2437. https://doi.org/10.3390/ma14092437
- Dondi M., Matteucci F., Baldi G., Barzanti A., Cruciani G., Zama I., Bianchi C.L. Gray–Blue Al2O3–MoOx Ceramic Pigments: Crystal Structure, Colouring Mechanism and Performance // Dyes Pigm. 2008. V. 76. № 1. P. 179–186. https://doi.org/10.1016/j.dyepig.2006.08.021
- Erdemir A. A Crystal-Chemical Approach to Lubrication by Solid Oxides // Tribol. Lett. 2000. V. 8. № 2–3. P. 97–102. https://doi.org/10.1023/A:1019183101329
- Erdemir A. A Crystal Chemical Approach to the Formulation of Self-Lubricating Nanocomposite Coatings // Surf. Coat. Technol. 2005. V. 200. № 5–6. P. 1792–1796. https://doi.org/10.1016/j.surfcoat.2005.08.054
- Vitale S.A., Hu W., D’Onofrio R., Soares T., Geis M.W. Interface State Reduction by Plasma-Enhanced ALD of Homogeneous Ternary Oxides // ACS Appl. Mater. Interfaces. 2020. V. 12. № 38. P. 43250–43256. https://doi.org/10.1021/acsami.0c11882
- Кольцов С.И., Алесковский В.Б. Некоторые закономерности реакций МН // Тез. докл. Науч.-техн. конф. ЛТИ им. Ленсовета. Ленинград. 1965. С. 67.
- Малыгин А.А. С.И. Кольцов – главный создатель метода молекулярного наслаивания // Сб. тез. докл. III Междунар. семинара “Атомно-слоевое осаждение: Россия, 2021”. Санкт-Петербург. 2021. С. 13–14.
- Mackus A.J.M., Schneider J.R., MacIsaac C., Baker J.G., Bent S.F. Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review // Chem. Mater. 2019. V. 31. № 4. P. 1142–1183. https://doi.org/10.1021/acs.chemmater.8b02878
- Profijt H.B., Potts S.E., Van de Sanden M.C.M., Kessels W.M.M. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges // Vac. Sci. Technol. A. 2011. V. 29. № 5. P. 050801. https://doi.org/10.1116/1.3609974
- Ponraj J.S., Attolini G., Bosi M. Review on Atomic Layer Deposition and Applications of Oxide Thin Films // Crit. Rev. Solid State Mater. Sci. 2013. V. 38. № 3. P. 203–233. https://doi.org/10.1080/10408436.2012.736886
- Diskus M., Nilsen O., Fjellva H. Growth of Thin Films of Molybdenum Oxide by Atomic Layer Deposition // J. Mater. Chem. 2011. V. 21. P. 705–710. https://doi.org/10.1039/C0JM01099E
- Drake T.L., Stair P.C. Vapor Deposition of Molybdenum Oxide Using Bis(ethylbenzene) Molybdenum and Water // Vac. Sci. Technol. A. 2016. V. 34. P. 051403. https://doi.org/10.1116/1.4959532
- Jurca T., Peters A.W., Mouat A.R., Farha O.K., Hupp J.T., Lohr T.L., Delferro M., Marks T.J. Second-Generation Hexavalent Molybdenum Oxo-Amidinate Precursors for Atomic Layer Deposition // Dalton Trans. 2017. V. 46. P. 1172–1178. https://doi.org/10.1039/C6DT03952A
- Vos M.F.J., Macco B., Thissen N.F.W., Bol A.A., Kessels W.M.M. Atomic Layer Deposition of Molybdenum Oxide from (NtBu)2(NMe2)2Mo and O2 Plasma // Vac. Sci. Technol. A. 2016. V. 34. P. 01A103. https://doi.org/10.1116/1.4930161
- Mattinen M., King P.J., Khriachtcheva L., Heikkilä M.J., Fleming B., Rushworth S., Mizohatac K., Meinander K., Räisänen J., Ritala M., Leskelä M. Atomic Layer Deposition of Crystalline Molybdenum Oxide Thin Films and Phase Control by Post-Deposition Annealing // Mater. Today Chem. 2018. V. 9. P. 17–27. https://doi.org/10.1016/j.mtchem.2018.04.005
- Mouat A.R., Mane A.U., Elam J.W., Delferro M., Marks T.J., Stair P.C. Volatile Hexavalent Oxo-Amidinate Complexes: Molybdenum and Tungsten Precursors for Atomic Layer Deposition // Chem. Mater. 2016. V. 28. № 6. P. 1907–1919. https://doi.org/10.1021/acs.chemmater.6b00248
- Kvalvik J.N., Borgersen J., Hansen P.-A., Nilsen O. Area-Selective Atomic Layer Deposition of Molybdenum Oxide // Vac. Sci. Technol. A. 2020. V. 38. P. 042406. https://doi.org/10.1116/6.0000219#suppl
- Maksumova A.M., Abdulagatov I.M., Palchaev D.K., Rabadanov M.Kh., Abdulagatov A.I. Studying the Atomic Layer Deposition of Molybdenum Oxide and Titanium–Molybdenum Oxide Films Using Quartz Crystal Microbalance // Russ. J. Phys. Chem. A. 2022. V. 96. № 10. P. 2206–2214. https://doi.org/10.31857/S0044453722100181
- Haynes W.M. CRC Handbook of Chemistry and Physics. 95ed. Boca Raton: CRC, 2014. P. 4–77.
- Pershina V., Fricke B. Group 6 Oxychlorides MOCl4, where M = Mo, W, and Element 106 (Sg): Electronic Structure and Thermochemical Stability // Russ. J. Phys. Chem. 1995. V. 99. № 1. P. 144–147.
- Elam J.W., Groner M.D., George S.M. Viscous Flow Reactor with Quartz Crystal Microbalance for Thin Film Growth by Atomic Layer Deposition // Rev. Sci. Instrum. 2002. V. 73. № 8. P. 2981–2987. https://doi.org/10.1063/1.1490410
- Абдулагатов А.И., Максумова А.М., Палчаев Д.К., Рабаданов М.Х., Абдулагатов И.М. Атомно-слоевое осаждение и термические превращения алюминий-ванадиевых оксидных тонких пленок // ЖОХ. 2022. Т. 92. № 8. С. 1310–1324. https://doi.org/10.31857/S0044460X22080182
- Wind R.A., George S.M. Quartz Crystal Microbalance Studies of Al2O3 Atomic Layer Deposition Using Trimethylaluminum and Water at 125°C // J. Phys. Chem. A. 2010. V. 114. № 3. P. 1281–1289. https://doi.org/10.1021/jp9049268
- Максумова А.М., Абдулагатов И.М., Палчаев Д.К., Рабаданов М.Х., Абдулагатов А.И. Исследование процесса атомно-слоевого осаждения оксида молибдена и титан-молибденовых оксидных пленок методом кварцевого пьезоэлектрического микровзвешивания // ЖФХ. 2022. Т. 96. № 10. С. 1490–1498. https://doi.org/10.31857/S0044453722100181
- Groner M.D., Fabreguette F.H., Elam J.W., George S.M. Low-Temperature Al2O3 Atomic Layer Deposition // Chem. Mater. 2004. V. 16. № 4. P. 639–645. https://doi.org/10.1021/cm0304546
- Larsson F., Keller J., Primetzhofer D., Riekehr L., Edoff M., Törndahl T. Atomic Layer Deposition of Amorphous Tin-Gallium Oxide Films // J. Vac. Sci. Technol. A. 2019. V. 37. № 3. P. 030906. https://doi.org/10.1116/1.5092877
- Mackus A.J.M., Schneider J.R., MacIsaac C., Baker J.G., Bent S.F. Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review // Chem. Mater. 2019. V. 31. № 4. P. 1142–1183. https://doi.org/10.1021/acs.chemmater.8b02878
- Myers T.J., Cano A.M., Lancaster D.K., Clancey J.W., George S.M. Conversion Reactions in Atomic Layer Processing with Emphasis on ZnO Conversion to Al2O3 by Trimethylaluminum // J. Vac. Sci. Technol. A. 2021. V. 39. № 2. P. 021001. https://doi.org/10.1116/6.0000680
- DuMont J.W., Marquardt A.E., Cano A.M., George S.M. Thermal Atomic Layer Etching of SiO2 by a “Conversion-Etch” Mechanism Using Sequential Reactions of Trimethylaluminum and Hydrogen Fluoride // ACS Appl. Mater. Interfaces. 2017. V. 9. № 11. P. 10296–10307. https://doi.org/10.1021/acsami.7b01259
- Coll M., Napari M. Atomic Layer Deposition of Functional Multicomponent Oxides // Apll. Mater. 2019. V. 7. № 11. P. 110901. https://doi.org/10.1063/1.5113656
- Абдулагатов А.И., Максумова А.М., Палчаев Д.К., Рабаданов М.Х., Абдулагатов И.М. Атомно-слоевое осаждение и термические превращения титан-ванадиевых оксидных тонких пленок // ЖПХ. 2021. Т. 94. № 7. С. 835–848. https://doi.org/10.1134/S1070427221070053
- Roessler B., Kleinhenz S., Seppelt K. Pentamethylmolybdenum // Chem. Commun. 2000. V. 12. P. 1039–1040. https://doi.org/10.1039/B000987N
- Plyuto Yu.V., Babich I.V., Plyuto I.V., Van Langeveld A.D., Moulijn J.A. XPS Studies of MoO3/Al2O3 and MoO3/SiO2 Systems // Appl. Surf. Sci. 1997. V. 119. № 1–2. P. 11–18.
- Clayton C.R., Lu Y.C. Electrochemical and XPS Evidence of the Aqueous Formation of Mo2O5 // Surf. Interface. 1989. V. 14. № 1–2. P. 66–70.
- Choi J.G., Thompson L.T. XPS Study of As-Prepared and Reduced Molybdenum Oxides // Appl. Surf. Sci. 1996. V. 93. № 2. P. 143–149. https://doi.org/10.1063/1.370690
- Baltrusaitis J., Mendoza-Sanchez B., Fernandez V., Veenstra R., Dukstiene N., Roberts A., Fairley N. Generalized Molybdenum Oxide Surface Chemical State XPS Determination via Informed Amorphous Sample Model // Appl. Surf. Sci. 2015. V. 326. P. 151–161. https://doi.org/10.1016/j.apsusc.2014.11.077
- NIST Standard Reference Database.
- Bellenger F., Houssa M., Delabie A., Afanasiev V., Conard T., Caymax M., Meuris M., Meyer K.De., Heyns M.M. Passivation of Ge(100)/GeO2/high-k Gate Stacks Using Thermal Oxide Treatments // J. Electrochem. Soc. 2008. V. 155. № 2. P. G33–G38. https://doi.org/10.1149/1.2819626
- Abdulagatov A.I., Sharma V., Murdzek J.A., Cavanagh A.S., George S.M. Thermal Atomic Layer Etching of Germanium-Rich SiGe Using an Oxidation and “Conversion-Etch” Mechanism // J. Vac. Sci. Technol. A. 2021. V. 39. № 2. P. 022602. https://doi.org/10.1116/6.0000834
Қосымша файлдар
