Synthesis and Luminescence Spectra of Copper-Containing Monoclinic PbCd2B6O12-Based Materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New copper-containing borates with the general formula PbCd2–xB6O12:xCu2+ have been prepared by solid-state reactions and characterized by X-ray diffraction and IR spectroscopy. A continuous series of substitutional solid solutions isostructural with monoclinic PbCd2B6O12 (sp. gr. P21/n) has been shown to exist in the range 0 < x ≤ 0.08. Replacing cadmium atoms by copper atoms, which are smaller in size, leads to a linear decrease in unit-cell parameters across the solid solution series. The IR spectroscopy and X-ray diffraction data suggest the presence of BO3 and BO4 anions in the structure of the borates. The thermoluminescence intensity has been measured as a function of activator content in the range 25–400°C. The thermoluminescence intensity in the borates increases with activator content, reaching a maximum at x = 0.06, and decreases at higher doping levels. The powder borates studied here can be used as a key component of new luminescence materials.

About the authors

T. N. Khamaganova

Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047, Ulan-Ude, Buryat Republic, Russia

Author for correspondence.
Email: khama@binm.ru
Россия, 670047, Улан-Удэ, ул. Сахьяновой, 6

References

  1. Mill B.V., Tkachuk A.M., Belokoneva E.L., Ershova G.I., Mironov D.I., Razumova I.K. Spectroscopic Studies of Ln2Ca3B4O12-Nd3+ (Ln = Y, La, Gd) Crystals // J. Alloys Compd. 1998. V. 275–277. P. 291–294. https://doi.org/10.1016/S0925-8388(98)00320-X
  2. Furetta C., Kitis G., Weng P.S., Chu T.C. Thermoluminescence Characteristics of MgB4O7:Dy, Na // Nucl. Instr. Methods Phys. Res, Sect. A. 1999. V. 420. № 3. P. 441–445. https://doi.org/10.1016/S0168-9002(98)01198-X
  3. Li X.Z., Wang C., Chen X.L., Li H., Jia L.S., Wu L., Du Y.X., Xu Y.P. Syntheses, Thermal Stability, and Structure Determination of the Novel Isostructural RBa3B9O18 (R = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) // Inorg. Chem. 2004. V. 43. P. 8555–8560. https://doi.org/10.1021/ic049710m555
  4. Мальцев В.В., Волкова Е.А., Митина Д.Д., Леонюк Н.И., Козлов А.Б., Шестаков А.В. Выращивание и теплофизические свойства кристаллов RAl3(BO3)4 (R = Y, Nd, Gd, Lu) и RMgB5O10 (R = Y, La, Gd) // Неорган. материалы. 2020. Т. 56. № 6. С. 645–658. https://doi.org/10.31857/S0002337X20060081
  5. Ямнова Н.А., Аксенов С.М., Стефанович С.Ю., Волков А.С., Димитрова О.В. Синтез, уточнение кристаллической структуры и нелинейно- оптические свойства СаВ3O5(ОН). Сравнительная кристаллохимия триборатов кальция // Кристаллография. 2015. Т. 60. № 5. С. 712–718. https://doi.org/10.7868/S0023476115050203
  6. Han B., Zhang J., Wang Z., Liu Y. Spectroscopic Characteristic of Ce3+ at Two Different Sites in Ba3Lu(BO3)3 under Ultraviolet Excitation // Оптика и спектроскопия. 2014. Т. 117. № 1. С. 70–75. https://doi.org/10.7868/S0030403414070034
  7. Shablinskii A.P., Bubnova R.S., Kolesnikov I.E., Krzhizhanovskaya M.G., Povolotskiy A.V., Ugolkov V.L., Filatov S.K. Novel Sr3Bi2(BO3)4:Eu3+ Red Phosphor: Synthesis, Crystal Structure, Luminescent and Thermal Properties // Solid State Sci. 2017. V. 70. P. 93–100. https://doi.org/10.1016/j.solidstatesciences.2017.06.009
  8. Atuchin V.V., Subanakov A.K., Aleksandrovsky A.S., Bazarov B.G., Bazarova J.G., Gavrilova T.A., Krylov A.S., Molokeev M.S., Oreshonkov A.S., Stefanovich S.Yu. Structural and Spectroscopic Properties of New Noncentrosymmetric Self-Activated Borate Rb3EuB6O12 with B5O10 Units // Mater Design. 2018. V. 140 P. 488–494. https://doi.org/10.1016/j.matdes.2017.12.004
  9. Simura R., Kawai S., Sugiyama K. Phase Transition and Thermal Expansion of Ba3RB3O9 (R = Sm–Yb, and Y) // High Temp. Mater. Processes. 2017. V. 36. № 8. P. 763–769. https://doi.org/10.1515/HTMP-2015-0290
  10. Kuznetsov A.B., Kokh K.A., Kononova N.G., Shevchenko V.S., Rashchenko S.V., Uralbekov B., Svetlichnyi V.A., Simonova E.A., Kokh A.E. Growth and Crystal Structure of Li3Ba4Sc3B8O22 Borate and Its Tb3+ Doped Green-Emitting Phosphor // J. Lumin. 2020. V. 217. P. 116755. https://doi.org/10.1016/j.jlumin.2019.116755
  11. Hao Y.-C., Xu X., Kong F., Song J.-L., Mao J.-G. PbCd2B6O12 and EuZnB5O10: Syntheses, Crystal Structures and Characterizations of Two New Mixed Metal Borates // CrystEngComm. 2014. V. 16. P. 7689–7695. https://doi.org/10.1039/c4ce00777h
  12. Хамаганова Т.Н. Синтез и термолюминесцентные свойства твердых растворов PbCd2–xMnxB6O12 // Неорган. материалы. 2019. Т. 55. № 3. С. 317–321. https://doi.org/10.1134/S0002337X19030114
  13. Senguttuvan N., Ishii M., Shimoyama M., Kobayashi M., Tsutsui N., Nike M., Dusek M., Shimizu H.M., Oku T., Adachi T., Sakai K., Suzuki J. Crystal Growth and Luminescence Properties of Li2B4O7 Single Crystals Doped with Ce, In, Ni, Cu and Ti Ions // Nucl. Instrum. Methods Phys. Res., Sect. A. 2002. V. 486. № 1–2. P. 264–267. https://doi.org/10.1016/S0168-9002(02)00714-3
  14. Manam J., Sharma S.K. Evaluation of Trapping Parameters of Thermally Stimulated Luminescence Glow Curves in Cu-Doped Li2B4O7 Phosphor // Radiat. Phys. Chem. 2005. V. 72. № 4. P. 423–427. https://doi.org/10.1016/j.radphyschem.2004.03.010
  15. Doull B.A., Oliveira L.C., Wang D.Y., Milliken E.D., Yukihara E.G. Thermoluminescent Properties of Lithium Borate, Magnesium Borate and Calcium Sulfate Developed for Temperature Sensing // J. Lumin. 2014. V. 146. P. 408–417.
  16. Hahira M.E., Saion E., Soltani N., Abdullah W.S.W., Navasery M., Saraee K.R.E., Deyhimi N. Thermoluminescent Dosimetry Properties of Double Doped Calcium Tetraborate (CaB4O7:Cu-Mn) Nanophosphor Exposed to Gamma Radiation // J. Alloys Compd. 2014. V. 582. P. 392–397. https://doi.org/10.1016/j.jallcom.2013.08.027
  17. Annalakshmi O., Jose M.T., Venkatraman B., Amarendra G. Synthesis and Study on the Luminescence Properties of Cadmium Borate Phosphors // Mater. Res. Bull. 2014. V. 50. P. 494–498. https://doi.org/10.1016/j.materresbull.2013.11.046
  18. Пир П.В., Шабанов Е.В., Доценко В.П. Синтез и ИК-спектроскопическое изучение боратов стронция // Вестн. Одесского нац. ун-та. 2005. Т. 10. Вып. 1. С. 21–27.
  19. Шмидт В. Оптическая спектроскопия для химиков и биологов; пер. с англ. / Под ред. Савилова С.В. М.: Техносфера, 2007. 368 с.
  20. Hanuza J., Maczka M., Lorenc, Kaminskii A.A., Becker P., Bohaty L. Polarized Raman and IR Spectra of Non-Centrosymmetric PbB4O7 Single Crystal // J. Raman Spectrosc. 2008. V. 39 P. 409–414. https://doi.org/10.1002/jrs.1840
  21. Шмурак С.З., Кедров В.В., Киселев А.П., Фурсова Т.Н., Шмытько И.М. Спектральные и структурные особенности соединений Lu1−xRExBO3 // Физика твердого тела. 2015. Т. 57. Вып. 8. С. 1558–1569.
  22. Хамаганова Т.Н., Хумаева Т.Г., Субанаков А.К., Перевалов А.В. Синтез и термолюминесцентные свойства CdB4O7:Tb3+, Mn2+ // Неорган. материалы. 2017. Т. 53. № 1. С. 59–63. https://doi.org/0.7868/S0002337X17010109
  23. Daniels F., Boyd C.A., Saunders D.F. Thermoluminescence as a Research Tool // Science. 1953. V. 117. P. 343–349. https://doi.org/10.1126/science.117.3040.343

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (373KB)
3.

Download (47KB)
4.

Download (141KB)
5.

Download (266KB)

Copyright (c) 2023 Т.Н. Хамаганова