Effect of Isomorphous Substitutions in Calcium Triphosphate, Ca3(PO4)2, on the Microstructural and Chemical Properties of Phosphate Cements Prepared from It

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper reports on the preparation and properties of phosphate materials for medical applications: brushite (CaHPO4·2H2O) or monetite (CaHPO4) based cements prepared from β- and α-Ca3(PO4)2 (TCP) via isomorphous substitutions of Na+ or K+ for Ca2+ and of SiO4-4  or SO42-  for 
. The mixing liquid used to prepare phosphate cements from substituted TCP was orthophosphoric acid or H2O, and TCP was mixed with dry Ca(H2PO4)2·H2O. Isomorphous substitutions of Na+ and K+ for Ca2+ ions and PO43- and PO42-  for SiO44-, SO42  were confirmed by scanning electron microscopy, X-ray microanalysis, and X-ray diffraction. It has been shown that, as a result of hardening of cement pastes with the use of different mixing liquids, one can obtain materials differing in microstructure, in which brushite or monetite prevails, depending on the TCP phase used in the preparation of the cement. In addition, we have studied interaction of the cements with water for a long time (16 days). The pH of the aqueous medium has been shown to vary from 5 to 7.5. This pH range is favorable for medical applications of the phosphate materials studied.

Sobre autores

Sh. Musoev

Moscow State University, 119991, Moscow, Russia

Email: alknt@mail.ru
Россия, 119991, Москва, Ленинские горы, 1

A. Knotko

Moscow State University, 119991, Moscow, Russia

Autor responsável pela correspondência
Email: alknt@mail.ru
Россия, 119991, Москва, Ленинские горы, 1

Bibliografia

  1. Gao C., Peng S., Feng P., Shuai C. Bone Biomaterials and Interactions with Stem Cells // Bone Res. 2017. V. 5. P. 17059. https://doi.org/10.1038/boneres.2017.59
  2. Putlyaev V.I., Safronova T.V. Chemical Transformations of Calcium Phosphates during Production of Ceramic Materials on Their Basis // Inorg. Mater. 2019. V. 55. № 13. P. 1328–1341. https://doi.org/10.1134/S0020168519130028
  3. Hench L.L. Bioceramics // J. Am. Ceram. Soc. 1998. V. 81. № 7. P. 1705–1728. https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
  4. Fernandez de Grado G., Keller L., Idoux-Gillet Y., Wagner Q., Musset A.M., Benkirane-Jessel N., Bornert F., Offner D. Bone Substitutes: A Review of Their Characteristics, Clinical Use, and Perspectives for Large Bone Defects Management // J. Tissue Eng. 2018. V. 9. P. 2041731418776819-01–2041731418776819-18. https://doi.org/10.1177/2041731418776819
  5. Bohner M. Calcium Orthophosphates in Medicine: From Ceramics to Calcium Phosphate Cements // Injury. 2000. V. 31. № 4. P. 37–47. https://doi.org/10.1016/s0020-1383(00)80022-4
  6. Giulia B., Sourav P., Lucia Sch., Stefano S., Lisa B., Massimo Del F. The Impact of the Bioceramic Scaffolds on Bone Regeneration in Preclinical in Vivo Studies: A Systematic Review // Materials. 2020. V. 13. № 7. P. 1500–1526. https://doi.org/10.3390/ma13071500
  7. Wang C., Xue Y., Lin K., Lu J., Chang J., Sun J. The Enhancement of Bone Regeneration by a Combination of Osteoconductivity and Osteostimulation Using β-CaSiO3/β-Ca3(PO4)2 Composite Bioceramics // Acta Biomater. 2012. V. 8. № 1. P. 350–360. https://doi.org/10.1016/j.actbio.2011.08.019
  8. Matsumoto N., Yoshida K., Hashimoto K., Toda Y. Dissolution Mechanisms of β-Tricalcium Phosphate Doped with Monovalent Metal Ions // J. Ceram. Soc. Jpn. 2010. V. 118. № 1378. P. 451–457. https://doi.org/10.2109/jcersj2.118.451
  9. Goldberg M.A., Fomin A.S., Murzakhanov F.F., Makshakova O.N., Donskaya N.O., Antonova O.S., Gnezdilov O.I., Mikheev I.V., Knotko A.V., Kudryavtsev E.A., Akhmedova S.A., Sviridova I.K., Sergeeva N.S., Mamin G.V., Barinov S.M., Gafurov M.R., Komlev V.S. The Improved Textural Properties, Thermal Stability, and Cytocompatibility of Mesoporous Hydroxyapatite by Mg2+ Doping // Mater. Chem. Phys. 2022. V. 289. P. 126461-1–126461-19. https://doi.org/10.1016/j.matchemphys.2022.126461
  10. Комлев В.С., Фадеева И.В., Гурин А.Н., Ковалева А.С., Смирнов В.В., Гурин Н.А., Баринов С.М. Влияние содержания карбонат-групп в карбонатгидроксиапатитовой керамике на ее поведение in vivo // Неорган. материалы. 2009. Т. 45. № 3. С. 373–378.
  11. Safronova T.V., Putlyaev V.I. Powder Systems for Calcium Phosphate Ceramics // Inorg. Mater. 2017. V. 53. № 1. P. 17–26. https://doi.org/10.1134/S0020168516130057
  12. Орлов Н.К., Киселевa А.К., Милькин П.А., Евдокимов П.В., Путляев В.И., Liu Y. Экспериментальное изучение высокотемпературной области системы Ca3(PO4)2–CaKPO4–CaNaPO4 // Журн. физ. химии. 2021. Т. 95. № 7. С. 982–986. https://doi.org/10.31857/S0044453721070190
  13. Кнотько А.В., Мусоев Ш.А., Умиров У.Т. О возможности управления микро- и наноструктурой кальций-фосфатных цементов через катионные и анионные замещения в твердой фазе // Перспективные технологии и материалы. Материалы междунар. науч.-практ. конф. Севастополь: СевГУ, 2021. С. 132–136.
  14. Ando J., Matsuno S. Ca3(PO4)2–CaNaPO4 System // Bull. Chem. Soc. Jpn. 1968. V. 41. № 2. P. 342–347. https://doi.org/10.1246/bcsj.41.342
  15. Fix W., Heymann H., Heinke R. Subsolidus Relations in the System 2CaO·SiO2–3CaO·P2O5 // J. Am. Ceram. Soc. 1969. V. 52. № 6. P. 346–347. https://doi.org/10.1111/j.1151-2916.1969.tb11948.x

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (107KB)
3.

Baixar (86KB)
4.

Baixar (110KB)
5.

Baixar (111KB)
6.

Baixar (119KB)
7.

Baixar (157KB)
8.

Baixar (5MB)
9.

Baixar (429KB)

Declaração de direitos autorais © Ш.А. Мусоев, А.В. Кнотько, 2023